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Abstract 

 

The process for developing software has evolved since the dawn of computers 

with several paradigms for creating the code that runs on them.  One area of software 

development focuses on the modeling of physical objects and processes to predict their 

behavior using simulation.  An accurate model can provide system developers several 

advantages in their development efforts.  Quantum key distribution networks currently 

represent an active area of development.  Concerns over the ability of today's technology 

to secure communications in the future are driving quantum key distribution system 

development.  Those systems possess several components that on the surface are 

logically easy to simulate using computers, but become more challenging as the 

complexity of actual implementation specifics are considered.  Two components common 

to most quantum key distribution implementations are the signal source and an optical 

attenuator.  Their role in the system is to provide the single photon per bit necessary to 

maintain theoretically perfect secrecy.  How the photon pulse is modeled has a significant 

impact on the accuracy and performance of quantum channel components like the optical 

attenuator.  Classical physics describe light using Maxwell's wave equations for 

electromagnetism.  Quantum physics has demonstrated light also behaves as discrete 

particles referred to as photons.  This paper looks at developing and characterizing the 

accuracy of software models for an optical attenuator as might be used in a quantum key 

distribution system using a particle-only model of the photon pulse.  
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EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN 
QUANTUM KEY DISTRIBUTION SYSTEMS USING A PARTICLE MODEL 

I.  Introduction 

When implemented correctly, use of the one-time pad (OTP) method of 

encryption has been proven impossible to crack with all possible decryptions being 

equally likely [7].  With this provably perfect security, it would seem this system of 

encryption would dominate all others, but security comes at a price.  One of the logistical 

issues associated with OTP use involves sharing, or distributing, a common key between 

the parties wishing to communicate without that key becoming available to any other 

party.  This can be quite daunting, especially if the parties are separated and their method 

of communication is limited to means subject to interception and interrogation by a third 

party.  One possible solution to this issue involves sharing the key in a manner that 

permits determining whether or not the key was intercepted during transmission.  To that 

end, developers are looking at using elementary particles such as photons to carry the key 

and exploit the laws of quantum physics in the process of quantum key distribution 

(QKD). 

With the early rudiments proposed in the 1970s [8] and implemented in 1991 [9], 

QKD relies on currently understood quantum mechanical principles to permit detecting 

the presence of an intercepting intermediary through the changes they induce when 

measuring the transmitted elementary particles.  Although frequently described as waves, 

light has been shown to exhibit particle-like behavior and these particles have come to be 

known as photons. 



 

2 
 

While an ideal QKD system can demonstrate perfect secrecy, the difficulty in 

working with individual photons makes current implementations less than perfect.  To 

date, there still exist no reliable single photon sources or detectors.  A common means of 

approximating single photons involves using lasers with very brief pulse durations and 

intensities.  Even still, the number of photons emitted is significantly above the single 

photon used to carry QKD information.  Therefore, optical attenuators are used to 

decrease the laser's signal down to the useful level. 

System developers are faced with making these and other compromises to deal 

with the non-idealities of actual QKD implementations resulting in deviations that are 

often exploitable.  Modeling and simulation offer these system developers a means of 

predicting system behavior resulting from design decisions prior to physical 

implementation.  

The Department of Defense considers modeling and simulation a "key enabler of 

DoD activities" and a "tool for achieving DoD goals" [10].  While a number of hardware 

implementations of QKD systems have been developed and tested, a software model for 

characterizing and simulating QKD systems could facilitate the rapid testing of changes 

to system parameters and components in order to predict system behavior.  Software 

modeling of physical systems and their processes often involves tradeoffs between 

performance and fidelity. 

The objective of this research is to develop software models for the initial 

components of a QKD quantum channel and characterize their accuracy through 

simulation.  The research focuses specifically on the signal source as a group of particles 

or photon pulse, and an optical attenuator that reduces that photon pulse down to, 
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optimally, a single photon for carrying the information used by a BB84 QKD 

implementation over single-mode optical fiber. 

While an optical attenuator's overall function is somewhat trivial, it reduces the 

intensity of signals passing through it by some amount, the means by which it performs 

its purpose can be quite complex when looked at the quantum level as in QKD. 

If the quantum signal used were represented by a wave model, the optical 

attenuator would become a logically simple transformation with all the functionality 

rolled into a mathematical function that merely decreases the amplitude of the wave by 

some prescribed amount.  At the macro level, this model is highly efficient requiring very 

little processing by the attenuator on the optical signal.  Components downstream of the 

optical attenuator would perform their own transformations on the resulting quantum 

signal to ultimately convert the amplitude into a photon count, likely rounding down or 

up partial photons which can't exist and represent some amount of error in the 

transformations from wave to discrete particles. 

Real optical attenuators are not mathematical functions.  For this research effort, 

an attenuator utilizing geometrical misalignments, specifically lateral offset 

misalignments, is considered.  While a highly efficient attenuator can be produced using 

a wave model for the quantum signal, this author proposes an attenuator using a particle 

model for the quantum signal is more realistic by simulating what occurs in the attenuator 

at its optical junction and therefore, is more accurate for simulating QKD 

implementations.  

To accomplish these goals, the author creates models for a QKD photon pulse 

using a three dimensional matrix to represent the pulse in time and space, an adjustable 
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lateral offset attenuator used to restrict the passage of photons through it based on the 

locations of the photons relative to the attenuator's lateral offset settings, and supporting 

code to confirm and collect results on the accuracy and performance of the interactions 

between models to compare against the mathematically calculated expected values. 

The research looks to answer the following questions: 

- what does a QKD photon pulse look like spatially so as to model it as a group of 

particles, 

- how should particles be distributed throughout the photon pulse, 

- what dimensions should such a particle model possess, 

- how should a lateral offset attenuator work given such a photon pulse, 

- what limitations exist when simulating with these models? 

One design goal of the model is to promote the rapid replacement of software 

functionality to allow numerous "what if" scenarios to allow a broad range of model 

fidelities available for rapid substitution to focus on any particular aspect or interaction of 

aspects within the QKD system.  

Before modeling QKD, in whole or in part, it would be beneficial to define what 

constitutes a QKD system, some of its integral parts, and the physics behind their 

functionality. 

II.  Background 

2.1 Overview 

This chapter contains the principle ideas, equations, and insight used in pursuing 

this paper's research.  The dichotomy between representing light as waves and particles, 
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central to quantum theory, is reviewed and serves as the basis behind the fundamental 

tenants of QKD.  After a brief highlight of the basics behind QKD, two key components, 

optical fibers and optical attenuators, are looked at in detail to build the foundation for 

modeling them as software components. 

2.2 Light As Waves 

The Dutch physicist Christian Huygens was the first person to propose a 

"convincing" theory that light behaves as a wave in 1678 [1].  He described light as a 

plane wave whose points at any given point in time act as sources whose propagation as 

individual spherical waves combine to form a wavefront tangent to the spherical waves.  

Using this model, he successfully derived the laws of reflection and refraction [11].  

Figure 1 below illustrates his model: 
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Figure 1:  Huygen's Model For Light Propagation [1] 

 

 

 

In Figure 1, arbitrary points selected from the plane on the left define the center of 

spheres that propagate at the speed of light c for some time ∆  whose tangents define the 

location of the plane on the right. 

Thomas Young's slit experiment in 1801 provided more concrete evidence to this 

wave model.  Figure 2 below illustrates his experiment: 
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Figure 2:  Thomas Young's Slit Experiment [1] 

 

 

 

Figure 2 shows the setup and results of Thomas Young's experiment.  Narrow slit 

S0 in screen A allows light to impinge on two narrow slits S1 and S2 on screen B.  As the 

light propagates towards screen C, the individual light sources created by slits S1 and S2 

interfere with one another as expected if the light propagated as waves.  The interference 

results in a pattern of distinct maxima and minima as shown on the right of Figure 2. 

James Clerk Maxwell would come to define the characteristics of light, and 

electromagnetic energy in general, with equations bearing his name.  But even these 

failed to explain the processes of emission and absorption where the theories of quantum 

mechanics are required [11] along with the concept of light as discrete particles. 
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2.3 Light As Particles 

One of the first observations that light exists as particles came from the 

photoelectric effect.  First observed by Heinrich Hertz in 1887, the photoelectric affect 

went unexplained for 18 years given only Maxwell's wave equations for light.  Figure 3 

below illustrates a setup for demonstrating the photoelectric effect: 

 

 

 

 

Figure 3:  Apparatus For Demonstrating Photoelectric Effect [1] 

 

 

 

In Figure 3 above, an incident beam of light is directed onto a metal surface T 

causing electrons to be emitted when the light's wavelength is short enough.  By adjusting 

the sliding contact to vary resistance, a slightly negative potential measured by voltmeter 
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V across collector C and the metal surface T can be maintained such that electrons 

emitted from surface T are just barely repelled by collector C.  The resulting current i is 

measured by ammeter A [1]. 

Tests show setting the potential measured at V such that the current read at A is 

just zero measures the maximum kinetic energy of an emitted electron as given in 

Equation 1 below: 

             Kmax = eVstop                                                            (1) 

where 

             Kmax = maximum kinetic energy of an electron (J) 

             e = elementary charge (1.602 10  C) 

             Vstop = stopping potential (V) 

Additionally, tests indicate changing the intensity of the incident light has no affect on 

the kinetic energy of the electrons emitted.  This is in contrast to the results expected 

from the continuous wave equations developed by Maxwell.  They suggest increasing 

wave amplitudes should increase the energy of the electrons emitted, but that's not what's 

observed.   Furthermore, these tests also show varying the frequency of the incident light 

below a certain point referred to as the cutoff frequency results in no emitted electrons.  

This result is also unexplained by Maxwell's wave equations where if you supplied 

enough energy in the form of light intensity, you would expect electrons to be emitted 

from T's surface [1]. 

In 1905, Albert Einstein proposed that light exists in discrete amounts and used 

his theory to explain the results observed from photoelectric effect tests.  These discrete 

amounts would come to be referred to as photons.  In Einstein's proposal, a single photon 
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of light has energy related to its frequency or wavelength conforming to either equation 2 

or 3 below: 

	 	                                                                  (2) 

	 	 ∙ 	/	                                                       (3) 

where 

              E = energy of a single photon (J) 

              h = Planks constant (6.626 10  J∙sec) 

              f = frequency of the electromagnetism (cycles/sec) 

              c = speed of light (2.998 10  m/sec) 

              λ = wavelength (m) 

The concept of photons is still poorly understood [1], but to create a model of 

light as a group of particles occupying space, it would be helpful if their dimensions were 

defined.  One proposed theory on photons provides a range of estimated diameters 

dependent on the wavelength of the light [2] using Equation 4 below: 

/ 	 	 	 	 	 10 ∙ /                                   (4) 

where 

        λ = wavelength (m) 

         = ratio of a circle's circumference to its diameter (unitless) 

This implies the diameter of photons at common telecommunication wavelengths of 

1,310 and 1,550 nanometers might fall in the range of from 4.17  10-7 to 4.17  10-3 and 

4.93  10-7 to 4.93  10-3 meters, respectively. 
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2.4 Using Photons For Quantum Key Distribution 

Stephen Wiesner originally proposed the idea of using quantum states to store 

information in his paper Conjugate Pairs [8].  Using the idea of conjugate pairs, Charles 

Bennett and Gilles Brassard proposed the first QKD protocol in their 1984 paper which 

has come to be referred to as the BB84 protocol [12].  This protocol uses the polarization 

directions of single photons to designate binary ones and zeros transferred between 

participating parties. 

To implement the protocol, single photons are created and shared between the 

communicating parties on what is referred to as the quantum channel.  Using the four, 

non-orthogonal polarization directions of 0, 45, 90, and 135, one of the parties randomly 

selects a "basis" choice (rectilinear or diagonal) and a bit choice (0 or 1) and polarizes the 

photon accordingly.  The other party randomly selects one of the two bases and measures 

the photon's polarization.  Properties of the conjugate pairs ensure measuring the wrong 

basis returns a random value and all information stored is subsequently lost.  This implies 

the measuring party will, on average, obtain the correct polarization measurement on half 

the bits set while the other half, being randomly correct half the time, should be discarded 

as unreliable.  The process of identifying which bits to keep is referred to as sifting. 

Sifting requires communication between the two parties over a public channel to 

exchange the results of their quantum transmissions.  Either party can initiate sifting by 

providing their information to the other.  The party setting the polarizations (the setter) 

can provide the measurer the basis set for each photon.  This allows the measurer to 

exclude the bits either not received at all or measured in the incorrect basis and forward 

the sifted list to the setter.  Conversely, the measurer can send the setter the list of basis 
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measured and allow the setter to eliminate those bits not received or measured in the 

incorrect basis and forward the sifted list to the measurer.  The reader should note 

exposing the basis over the public channel in no way reveals the associated bit value. 

While a true working implementation of QKD involves much more, the above 

represents the logical minimum required to perform QKD given ideal components and 

conditions.  Many physical implementations of QKD transmit their photons over optical 

fiber. 

2.5 Optical Fiber 

Actual QKD systems frequently use optical fiber as the means of transferring 

photons between participants.  It blocks out external light on the quantum channel, a 

source of noise for QKD systems operating over open space.  In addition, the attenuation 

of quantum signals is higher in open atmosphere as compared to optical fiber (typically 

less than 0.35 dB per kilometer [3] and as low as 0.15 dB per kilometer [4]), so quantum 

signals can travel greater distances through fiber.  Finally, quantum signals follow the 

path of the optical fiber versus the straight path of open space allowing the transfer of 

quantum signals other than line-of-sight. 

Typical optical fiber is made up of three components; the core, cladding, and an 

exterior coating as illustrated in Figure 4 below: 
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Figure 4:  Optical Fiber Construction [3] 

 

 

 

The core is meant to carry the bulk of the optical signal and is usually made of 

very pure glass doped slightly to raise its refractive index.  The cladding is also made of 

pure glass, but manufactured such that its refractive index is lower than the core's.  There 

are numerous different coatings used on optical fiber with all serving the same purpose; 

to protect the fiber's cladding [3]. 

Optical fibers work through the process of total internal reflection.  Total internal 

reflection occurs when light passing through the core encounters the lower refractive 

index of the cladding.  This makes the cladding surface reflective and the light bounces 

off the cladding's internal surface back towards the core. 

Typically cylindrical, fiber cores come in various diameters chosen for the signals 

they're expected to carry as well as the mode they're intended to operate in.  Mode refers 

to the number of paths light can take within an optical fiber with single-mode indicating 

one path.  The mode of operation is a function of the radius of the fiber core, the 
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wavelength of the light it's carrying, and a difference between the core and cladding's 

refractive indices know as the numerical aperture [3].  The numerical aperture is given by 

Equation 5 below: 

	 	                                            (5) 

where 

           NA = numerical aperture (unitless) 

            = refractive index of core (unitless) 

            = refractive index of cladding (unitless) 

The numerical aperture is a measure of how easily an optical fiber accepts light and is 

always a decimal value between zero and one with zero indicating the fiber accepts no 

light and one indicating it accepts all light incident on it [3]. 

Numerical aperture is used in the normalized frequency given by Equation 6 

below: 

	 	                                                        (6) 

where 

              V = normalized frequency (unitless) 

               = ratio of a circle's circumference to its diameter 
(unitless) 

              λ = wavelength of light used (m) 

              a = radius of the core (m) 

              NA = numerical aperture (unitless) 
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To operate in single-mode, a fiber's normalized frequency must fall between 0 and 2.405 

[4].  Standard single-mode optical fiber such as ITU-T G.652 has a nominal diameter of 8 

to 10 microns and a cladding diameter of 125 microns for use with the common 

telecommunication wavelengths of 1,310 and 1,550 nanometers [3]. 

The distribution of light within an optical fiber in single-mode operation is not 

uniform.  The majority of photons traveling in a single-mode optical fiber reside close to 

the center of the core and diminish in a Gaussian manner [13] out to the cladding 

whereupon they eventually diminish exponentially [5].  The mode field diameter 

represents a measure of the light intensity in the cross-section of an optical fiber or a 

measure of the "transverse electromagnetic field intensity in a fiber cross-section [6]" 

from plus and minus 1 / e field amplitude points and the 1 / e2 power points [4].  Figure 5 

below illustrates mode field diameter and the corresponding intensity power distribution 

within optical fiber: 

 

 

 

 

Figure 5:  Mode Field Diameter of Single-Mode Optical Fiber [14] 
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The left of Figure 5 overlays the mode field diameter on top of a cross-section of optical 

fiber while the right of Figure 5 shows how some of the light passes through the cladding 

when operating in single-mode.  Figure 6 below illustrates this distribution for 1,550 

nanometer light in single-mode operation: 

 

 

 

 

Figure 6:  Intensity as a Function of Distance From Core's Center [6] 

 

 

 

Figure 6 above shows the greatest intensity occurs at the core's center and decreases in a 

Gaussian manner out to the cladding where the decrease eventually becomes exponential. 
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Figure 7 below plots the numerical, Gaussian, and exponential intensities as a 

function of radial distance in a 9 micron core fiber for 1,550 nanometer light: 

 

 

 

 

Figure 7:  Intensity Comparison as a Function of Distance From Core's Center [5] 

 

 

 

Figure 7 above shows the numeric and Gaussian approximations are closest 

starting from the core's center out to about 7 microns.  The exponential approximation 

starts off divergent until around 4 microns.  Into the cladding, the Gaussian starts to 

diverge as compared to the exponential around 8 microns. 
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In the core, the Gaussian approximation follows Equations 7 and 8 below [5]: 

~	 	                                                      (7) 

0.65 1.62 / 	2.88                                       (8) 

where 

              I = intensity (a.u.) 

              r = radial distance from core's center (m) 

               = mode field radius (m) 

              e = Euler's constant (unitless) 

              a = radius of the core (m) 

              V = normalized frequency (unitless) 

               = ratio of a circle's circumference to its diameter 
(unitless) 

              λ = wavelength (m) 

              NA = numerical aperture (unitless) 

Farther into the cladding, the Gaussian approximation is replaced in favor of an 

exponential approximation using Equations 9 and 10 below [5]: 

	~	 	                                                        (9) 

	 	1.1428 	 	0.996                                             (10) 

where 

           I = intensity (a.u.) 

           r = radial distance from core's center (m) 

           e = Euler's constant (unitless) 
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           v = function of the normalized frequency (unitless) 

           a = radius of the core (m) 

           V = normalized frequency (unitless) 

2.6 Optical Attenuators 

In order for QKD to remain perfectly secure as described in the theoretical model, 

the raw key bit transmitted between parties must be one, and only one, photon.  If more 

than one photon is emitted, a third party could measure one and allow the others to pass 

by undisturbed in a process known as photon splitting [15].  This process would 

fundamentally compromise the very purpose of QKD, to permit users the opportunity to 

detect the presence of an intercepting third party by the perturbations they induce by 

measuring the transmitted photons.  To minimize this, actual QKD implementations must 

either generate a single photon, or block all but one photon from transmitting [16].  An 

optical attenuator can accomplish the later. 

Normally used to reduce the power level of an incoming signal, an optical 

attenuator's purpose in a QKD implementation is to cut the signal down so that, 

optimally,  a single photon traverses from transmitter to receiver.  The optical attenuator 

creates losses across itself to reduce the number of photons transmitted at its output.  

There are typically three ways to realize these losses and provide attenuation;  create an 

air gap or misalignment, absorb photons, or reflect photons [3]. 

The main losses at an optical junction are caused by misalignments [6] and 

include: 
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 x = Lateral offset; 
 z = Longitudinal offset; 
 ɵ = Angular misalignment; and 
 wT/wR = Mode field diameter ratio. 

Figure 8 below graphically identifies these parameters: 

 

 

 

 

Figure 8:  Main parameters affecting joint power loss [6] 

 

 

 

From Figure 8 above, we see the lateral offset x is the distance between the cores' 

centers normal to the cores' axes.  The longitudinal offset z is the distance between the 

cores' centers parallel to their axes.  This is sometimes referred to as an air gap [3].  The 

angular misalignment  measures the degree of rotation between the cores' centers 

relative to their axes.  The mode field diameter ratio wT/wR is a ratio of the transmitting 

core's mode field diameter to the receiving core's mode field diameter. 
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In a single-mode joint with no longitudinal offset, the attenuation is described by 

Equation 11 below [6]: 

               

(11) 

where A is attenuation, wT is the transmitting beam mode field radius, wR is the receiving 

beam mode field radius, x is the lateral offset, λ is the wavelength,  is the ratio of a 

circle's circumference to its diameter,  n is the fiber core refractive index, and ɵ is the 

angular misalignment.  Plots of the attenuation as a function of these parameters is given 

in Figure 9 below: 

 

 

 

 

Figure 9:  Single-Mode Attenuation as a Function of Geometrical Parameters [6] 
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Figure 9 shows the main contributor to attenuation in an optical junction is due to lateral 

offset [6]. 

Thus, an optical attenuator utilizing geometrical parameters can be implemented 

by increasing the air gap associated with the longitudinal offset z, increasing the lateral 

offset x, or increasing the angular misalignment ɵ. 

Due to differences in the index of refraction between air and an optical core, an 

optical signal will spread out at an air gap allowing photons to leak out and not pass from 

the transmitting core to the receiving core.  Similarly, photons leak out when a lateral 

offset exists or the transmitting core is larger than the receiving core. 

Before moving on to model the optical attenuator in software, let's review the 

specific benefits a QKD model, of which the optical attenuator is a necessary component, 

might provide. 

2.7 Computer Simulation 

The ultimate purpose of a QKD model is to provide a software abstraction of a 

physical implementation suitable for simulation.  There are numerous advantages to 

simulating a QKD implementation. 

The equipment to implement a QKD network is costly and can require technical 

expertise to operate, especially when the system implementation is not a commercial 

product but a laboratory creation. 

Individual photons are not directly observable and can travel at the speed of light.  

A simulation allows analysis at any time for real-time systems or at significant points in 
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the case of discrete event simulations.  Time or events can be sped up or slowed down to 

collect results that might otherwise take a significant amount of either. 

With proper design, system parameters can be varied quickly to alter system 

configurations and performance. 

Finally,  a QKD simulation does not have any of the inherently dangerous aspects 

related to some implementations such as lasers, cryogenic coolers, or associated electrical 

systems. 

In contrast to the above, there are some disadvantages a model simulating a QKD 

implementation versus the physical implementation itself possesses.  The simulation is an 

approximation of the real implementation and its fidelity is limited.  Developing and 

maintaining a simulation requires not only expertise in implementing the QKD network, 

but software engineering skills as well. 

2.8 Summary 

Prior to quantum physics, light was described by Maxwell's equations for 

electromagnetism and treated as waves.  Unexplained observations like the photoelectric 

effect led Albert Einstein to propose light what made up of discrete particles.  These 

particles would come to be known as photons.  Theoretical quantum key distribution can 

use the polarization of photons to transmit information in a means allowing for the 

detection of an intercepting party.  Current quantum key distribution implementations 

frequently use lasers and optical attenuators to optimally generate no more than a single 

photon for each bit of information transmitted over optical fiber in single-mode.  The 

distribution of photons traveling in single-mode optical fiber follows a Gaussian curve 
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measured by the mode field diameter.  Some optical attenuators use geometric 

misalignments to perform their function.  A software model of the interaction between a 

photon pulse and an optical attenuator would prove useful in simulating certain quantum 

key distribution implementations.  Models of physical components can vary in their 

representations and how they interact.  Tradeoffs between various levels of accuracy and 

performance must be considered when designing a software model. 

III.  Methodology 

3.1 Overview 

This chapter details the simulation environment used and provides descriptions of 

the model implementations developed for this research.  It includes an experiment used to 

define a dimensional parameter used by the models as well as the simulation experiment 

used to characterize the models' accuracy. 

3.2 Simulation Environment 

All simulations were run in 64-bit Windows 7 Professional on a Dell Precision 

M6500 mobile workstation with an Intel Core i7-920 CPU running at 2.00 GHz and 8 GB 

of RAM.  Simulations are console applications with status information printed in the 

window they run in.  All model coding is in the C programming language and is 

contained in Appendix A.  For random number generation, version 2.1 of the double 

precision Fast Mersenne Twister developed by Mutsuo Saito and Makoto Matsumoto was 

used [17]. 
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3.3 Photon Pulse Implementation 

A spatial model is considered for the QKD quantum signal where photons are 

represented as unit particles in a three dimensional matrix where two of the dimensions 

represent the horizontal and vertical position within the cross-section of an optical fiber 

and the third dimension represents time in picosecond intervals. 

The photon pulse is assumed to arrive at the attenuator within single-mode optical 

fiber.  The cross-section of optical cores and cladding are circular, however, a square 

model can approximate the same amount of cross-sectional area and make accessing 

matrix elements easier.  This equivalency between a circular versus square model to 

represent the cross-section of optical fibers is illustrated graphically in Figure 10 below: 

 

 

 

 

Figure 10:  Demonstrating Equivalent Areas Between Square and Circular Models 
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with equivalency occurring when the areas in red and green equal one another. 

The square model's dimensions for equivalency are determined by setting the 

equations for the area of a square equal to the area of a circle as in Equation 12 below: 

∙ 	                                                       (12) 

where 

             x = length of the square's side (m) 

             r = length of the circle's radius (m) 

For example, using a radius of 4 10-6 meters for the assumed optical fiber core 

for single-mode operation, the equivalent square's sides would be determined using 

Equation 13 below: 

	 	 4 10                                                 (13) 

Solving for x, an equivalent square model's sides become 7.09  10-6 meters. 

Given this square matrix representation, an arbitrary frame of reference is selected 

and labeled such that in the matrix, the vertical dimension increases from 0 to some 

defined upper bound from top to bottom to indicate rows and the horizontal dimension 

increases from 0 to the upper bound from left to right to indicate columns as illustrated in 

Figure 11 below: 
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Figure 11:  Frame of Reference for Labeling Horizontal and Vertical Matrix Dimensions 

 

 

 

Figure 11 above illustrates an example matrix with the maximum dimension defined as 

22 such that a 22 by 22 matrix is defined.  

The next step to consider is how to identify the upper bound dimension so as to 

divide the matrix into discrete elements to contain the quantum signal's photons.  Several 

important characteristics must be considered to determine the number of elements to use; 

how should the total photon count be distributed amongst the elements, what is the 

highest number of photons expected in a single picosecond from the quantum signal 
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source, and can an offset attenuator using the photon pulse return photon counts 

representative of current QKD implementations? 

First, the distribution is considered.  The overall intensity of the photon pulse for 

any given picosecond is distributed within the cross-section of an optical fiber in a 

Gaussian manner fitting Equation 7 above.  One means of accomplishing this distribution 

is to divide the matrix's horizontal and vertical elements into concentric regions and fill 

each region with a representative percentage of the total number of photons for that 

picosecond consistent with the mode field diameter distribution as illustrated in Figure 12 

below: 

 

 

 

 

Figure 12:  Increasing Photon Density Towards Fiber Core's Center 

 

 

 

Figure 12 above shows a 9 by 9 element matrix defining 5 concentric regions 

where the outer ring of elements represents the outermost region with the least intensity 
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and consequently the least shading.  Each concentric region has higher intensity and 

correspondingly darker shading as we move towards the innermost region containing the 

highest concentration of photons and thus the darkest shade. 

However many regions are used, the outermost region is defined to contain the 

remaining photon percentage not allocated to the inner regions by the Gaussian 

distribution.  This allows the model to account for the increasingly smaller percentage of 

intensity as the Gaussian's limit tends towards zero. 

The next characteristic to consider is representing the maximum photon count for 

a single picosecond.  Figure 13 below illustrates the intensity of a generic laser pulse with 

respect to time: 

 

 

 

 

Figure 13:  Generic Laser Pulse Shape As a Function of Time 
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Using an oscilloscope of sufficient resolution, it is possible to sample a laser pulse 

like the one in Figure 13 above at picosecond intervals and convert the measured power 

into photon count by dividing by the energy of a single photon given in Equation 3 above 

and create a photon pulse profile of picosecond resolution.  Storing such a photon pulse 

profile as the total number of photons to emit per picosecond in a file permits profiling 

multiple different quantum sources and provides the starting basis for an algorithmic 

means of implementing the photon pulse model. 

The photon pulse is added to the three dimensional matrix one picosecond at a 

time starting with reading the file and obtaining the total photon count for the current 

picosecond.  That picosecond's total number of photons is then distributed into the matrix 

starting with the outermost region and working towards the innermost region. 

Each region is assigned a percentage of the total photon count for the current 

picosecond based off the number of regions modeling the photon pulse and distributed in 

conformance with the mode field diameter.  To do this, a cumulative distribution function 

is used to integrate the intensity function defined by Equation 7 above for each region.  

The resulting percentages define the portion of the entire photon pulse to assign to each 

region by multiplying each region's percentage with the total photon count to generate the 

total number of photons for each region, respectively.  If the number of photons for a 

region falls below one, a single check of probability is used to determine if one photon is 

placed in that region. 

The capacity of a region is defined as the number of elements in the region times 

the integer represented by the unsigned element size used, such as 255 for a single byte of 

storage per element or 65,535 for two bytes of storage.  Before placing photons in the 
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region, the number of photons to place is compared to the capacity of the region to ensure 

there's storage for this region's photons.  If not, a notification is generated informing the 

user the total photon count for the current picosecond called for from the photon pulse 

profile input file exceeds the model's capabilities and the region is filled to capacity. 

Otherwise, starting with the upper left element of the region, each element in the 

region is checked probabilistically to see if it contains the next photon to place in a 

counter-clockwise manner until all photons for the region are placed.  The probability of 

placing a photon in the element is a function of the total number of photons to place in 

the region divided by the number of elements in the region.  This process of 

probabilistically determining whether an element receives the next photon to place is to 

avoid merely placing photons in order which would skew results for attenuation events 

containing the left and bottom sides of a region which would get photons before the right 

and top sides of the region.  During this rotation, individual elements are checked to 

confirm they still possess storage capacity for another photon.  If not, the element is 

skipped and the next element is considered.  This process repeats until the region's 

photons are fully placed at which point the process repeats with the next region until all 

the photons for this picosecond are placed.  Figure 14 below illustrates the process for the 

outermost and next regions in an example 22 by 22 matrix: 
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Figure 14:  Path For Filling Regions 

 

 

 

The red arrows in Figure 14 above illustrate the circuit followed in the outermost region 

starting in element (0, 0) in the upper left hand corner per the frame of reference selected 

previously and proceeds downward to (1, 0), (2, 0), etc. until reaching element (21, 0) 

when it starts moving rightward to (21, 21), then upward to (0, 21), then leftward to (0, 0) 

in a circuit filling elements with photons.  The circuit continues until all photons 

designated for the region are placed whereupon the next concentric region, identified by 

the blue arrows, is filled starting with its upper left element at (1, 1) and so forth moving 

towards the innermost regions until the entire photon pulse for the current picosecond is 

placed. 
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A slightly different process is used for the innermost region.  The matrix's 

dimensions are defined to be odd such that the innermost region always contains 9 

elements instead of 4 as demonstrated by Figure 15 below: 

 

 

 

 

Figure 15:  Example Matrices Demonstrating Equal Numbers of Regions 

 

 

 

Figure 15 above shows two pairs of matrices with the same number of regions, but 

varying numbers of innermost elements defined.  The pair on the left both have two 

regions defined; the innermost region highlighted in dark blue and the outermost region 

highlighted in light blue.  The matrix with odd dimensions of 5 (0 through 4) elements is 

used as the innermost region contains 9 elements instead of 4.  Similarly, the pair of 

matrices on the right of Figure 15 have three regions defined; the innermost region 

highlighted in dark blue, one unhighlighted intermediate region, and the outermost region 

highlighted in light blue.  The matrix with odd dimensions of 7 elements is used as the 

innermost region contains 9 elements instead of 4. 

0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4

5 5

6
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Instead of filling the innermost region elements in a circuitous manner as before, 

elements are added to the 3 rows top to bottom, left to right repetitively until the 

remaining photons are placed. 

After the total number of photons for the picosecond are placed in their respective 

regions in a manner consistent with the mode field diameter distribution, the next 

picosecond of the photon pulse is read from the photon pulse profile input file and the 

previous processes repeat.  After the last picosecond is placed, the entire photon pulse is 

complete and, for this research, submitted to the optical attenuator for attenuation. 

By distributing the photon pulse in the manner described above, the author 

proposes a reasonably accurate spatial model of the laser pulse as discrete particles is 

created suitable for processing by a lateral offset attenuator using geometric 

misalignments to determine which photons are attenuated and which photons pass on. 

3.4 Lateral Offset Attenuator Implementation 

The photon pulse representation described above as a spatial grouping of photons 

in three dimensions permits an attenuator that uses the concept of lateral misalignment 

between two abutted faces of an optical junction for creating the net attenuation. 

Following the model described for the photon pulse above, the opposing faces of 

the abutted junctions are segmented into the same number of discrete elements 

representing channels within the cross-section of the optical fiber used to define the 

location of photons. 

A horizontal and vertical parameter are defined to indicate the amount of lateral 

offset to apply.  Using the spatial information contained in the three dimensional matrix 
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representation of the photon pulse, the attenuator passes photons that match up from face 

to face and drops those which are misaligned.   Increasing lateral offset is defined as 

dropping channels from bottom to top and from right to left.  Figure 16 below illustrates 

an example 22 by 22 matrix with offset settings of vertical = 18 and horizontal = 18 

which would result in the attenuation of all photons propagating in the shaded channels: 

 

 

 

 

Figure 16:  Lateral Offset Example Demonstrating Attenuated Elements 
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Algorithmically, the lateral offset attenuator works by setting the elements of the 

pulse matrix that lie outside the offset bounds to zero for each picosecond of the entire 

photon pulse duration.  Setting the horizontal offset parameter to the matrix's maximum 

dimension or more results in no attenuation of the starting row indexed by the vertical 

offset parameter.  Setting the vertical offset parameter to the matrix's maximum 

dimension or more implements no attenuation of the input photon pulse. 

3.5 Experiment 1:  Define Photon Pulse Dimensions 

3.5.1 Objective 

The objective of Experiment 1 is to identify the number of regions, and 

consequently the horizontal and vertical dimensions, necessary to accommodate a 

representative QKD quantum signal source in conformance with the characteristics of the 

chosen quantum signal source, the optical fiber used, the mode field diameter 

distribution, and the lateral offset attenuator's expected functionality. 

3.5.2 Parameters 

Parameters associated with Experiment 1 include the characteristics of the 

components involved including the quantum signal source and the optical fiber used as 

detailed below: 

1. Number of regions - the number of equally sized concentric regions to divide 

a single picosecond of quantum signal into.  Does not include an extra 

outermost region to catch the remaining photons as the limit of the Gaussian 

approximation tends towards zero. 
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2. Outer Region Elements - the number of photon pulse matrix elements in the 

outermost region and a function of the number of regions. 

3. Inner Region Elements - the number of photon pulse matrix elements in the 

innermost region.  Always defined as 9 by using an odd number for the 

matrix's dimensions. 

4. Wavelength - the wavelength of the quantum signal source used. 

5. Peak Source Power - the maximum power supplied by the quantum signal 

source. 

6. Source Duration - the time difference from start to finish of the quantum 

signal source. 

7. Radial Distance - a measure of the distance from the fiber's center normal to 

its axis. 

8. Outer Radial Limit - the radial distance modeled by the number of regions. 

9. Interval - the size of each region given by the outer radial limit divided by the 

number of regions. 

10. Core's Radius - the radial distance from the fiber's center where the fiber's 

core ends and the fiber's cladding begins. 

11. Core's Index of Refraction - ratio of the speed of light in a vacuum to the 

speed of light in the fiber's core. 
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12. Cladding's Index of Refraction - ratio of the speed of light in a vacuum to 

the speed of light in the fiber's cladding. 

13. Numerical Aperture - measure of how easily the fiber accepts light as 

defined by Equation 5 above. 

14. Normalized Frequency - the sum of the squares of the eigenvalues in the 

core and cladding defined by Equation 6 above. 

15. Mode Field Radius - half the mode field diameter and a function of the 

normalized frequency and the fiber core's radius. 

16. Intensity - the quantum signal's field strength squared and approximated by a 

Gaussian function defined by Equation 7 above. 

17. Standard Deviation - measure of variability defined as half the mode field 

radius. 

18. Element Size - the number of bytes used to represent the number of photons 

an individual matrix element contains. 

3.5.3 Methodology 

Using the equations defining the applicable parameters above, a Matlab script is 

used to iterate through various combinations of parameters to calculate intensity 

distributions and corresponding region percentages of the total photon pulse count for a 

given picosecond to identify photon pulse configurations suitable for modeling the 

quantum signal's photon pulse.  The script is presented in Appendix B. 
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The parameters associated with the quantum source and optical fiber are kept 

fixed and are summarized in Table 1 below: 

 

 

 

Table 1:  Experiment 1 Fixed Parameters 

Parameter Setting 

Inner Region Elements 9 
Wavelength 1,310 nm 
Peak Source Power 0.001 J/sec 

Source Duration 400 x 10-12 sec 

Core radius 4 x 10-6 m 

Core's Index of Refraction 1.49 
Cladding's Index of Refraction 1.485 
Numerical Aperture 0.12196 
Normalized Frequency 2.3399 

Mode Field Radius 4.4806 x 10-6 m 

Maximum Photon Count Per Picosecond 6,595 photons 
Element Size 1 byte 

 

 

 

While the script does calculate some of the fixed parameters such as numerical 

aperture and normalized frequency, their values don't change between iterations for 

Experiment 1 and are strictly for maintaining the generality of the script for 

implementing other quantum signal source and fiber permutations.  

The parameters to be varied include the outer radial limit and the number of 

regions which, by definition, varies the number of elements in the outermost region.  
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Using these parameters, the script calculates the interval, an array of radial distances from 

0 to the outer radial limit in interval amounts, and the intensity at each of the defined 

radial distances.  Then, using a cumulative distribution function, a percentage for each 

defined radial distance is calculated along with the remaining percentage covered by the 

outermost region to account for the entire Gaussian approximation. 

The outer radial limit starts at the fiber core's radius of 4 microns, given the bulk 

of the quantum signal is carried in the fiber's core, and the data for several incremental 

micron steps are collected and compared to establish the impact of modeling more and 

more of the fiber's cladding. 

The number of regions is incremented from 1 in 1 region increments until the 

number of photons for the innermost region reaches a number for which the 9 innermost 

elements are capable of storing their region total based on their percentage of the total 

photon pulse and the element size used to store photons.  

For each number of regions increment, the probability of returning a single 

photon from a single element in the outer region is calculated to compare against the 

desired result of 10 percent. 

3.5.4 Assumptions and Limitations 

The quantum signal's source generating photon pulses is fixed as a 400 

picosecond duration laser pulse with a maximum peak power output of 1 milliwatt and a 

wavelength of 1,310 nanometers.  Assuming such a source, the maximum photon count 

for a single picosecond is determined using Equation 3 above.  Starting with the energy 

of a single photon as (6.626  10-34 J∙sec ∙ 2.998  108 m/sec) / 1310  10-9 m yields 

1.516  10-19 J/photon.  Dividing the assumed quantum signal source peak output power 
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of 1 milliwatt by the energy of a single photon results in (0.001 J/sec ∙ 10-12 

sec/picosecond) / 1.516 J/photon for a total of 6,594.5966 photons/picosecond rounded 

up to 6,595 photons/picosecond. 

The photon pulse is assumed to originate within a step indexed optical fiber 

operating in single-mode.  The parameters identified in Table 1 above are selected to 

accomplish such. 

The overall size of the photon pulse matrix is limited by the amount of memory 

supplied by the simulation environment.  Given an unsigned element of two bytes storage 

can accommodate 65,535 photons on its own, only unsigned elements of single byte 

storage capable of storing 255 photons each are considered. 

3.5.5 Expected Results 

Some combinations of parameters will result in photon pulse model dimensions 

not suited for representing the quantum source parameters used either due to not being 

able to contain the peak number of photons in the innermost region or for having too 

many possible photons in the outermost region.  Successful photon representations 

support the expected functionality of a QKD lateral offset attenuator by returning a single 

photon from a single outermost region element for the quantum signal's duration 10 

percent of the time and represent the distribution of photons in a manner consistent with 

the mode field diameter by containing an appropriate percentage of the total photon pulse 

in each defined region including the peak photon counts expected from the quantum 

signal source. 

The way in which the lateral offset attenuator's functionality is defined is such 

that the maximum amount of attenuation short of complete blocking of all photons allows 
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a single element (0, 0) per picosecond to pass unattenuated.  A successful photon pulse 

representation must allow no more than this single element multiplied by the photon 

pulse duration to contain no more than the expected average photon count of 0.1 photons.  

As there are no such things as partial photons, a 10 percent probability of a single photon 

being placed in the (0, 0) matrix element over the pulse duration is used to denote 

acceptable attenuator functionality.  This probability is calculated by dividing the number 

of photons in the outermost region by the number of elements in the region for a single 

picosecond and multiplying by the photon pulse's duration. 

The distribution of photons within a single picosecond is defined by the mode 

field diameter with the peak number of photons occurring near the center of the fiber and 

diminishing in a Gaussian manner with radial distance from the fiber's center.  While the 

intensity shifts from a Gaussian to exponential approximation, this doesn't occur until 

around 8 microns from the core's center where the percentage of photons starts seeing a 

steeper drop off in the Gaussian approximation.  A successful photon pulse representation 

is defined as one that models this distribution through the entirety of the photon pulse. 

The number of photon pulse matrix elements is limited by the simulation 

environment.  Furthermore, the number of elements per region diminishes moving from 

the outermost region towards the innermost region while the number of photons per 

region increases towards the innermost region to support the Gaussian distribution.  A 

successful photon pulse representation will support the peak power output of the quantum 

signal source by containing the maximum number of photons in the inner region 

consistent with the mode field diameter percentages obtained from the cumulative 

distribution of the Gaussian intensity defined for the innermost region. 
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3.6 Experiment 2:  Characterize Attenuator Accuracy 

3.6.1 Objective 

Experiment 2 looks at characterizing the accuracy of the software model of a 

lateral offset attenuator using the photon pulse model established from the results of 

Experiment 1.  The output of the model is compared against the mathematically expected 

results for varying amounts of lateral offset. 

3.6.2 Simulation Parameters 

Since the lateral offset attenuator uses the photon pulse established in Experiment 

1, Experiment 1's parameters are also applicable to Experiment 2.  The following 

additional parameters are also applicable: 

1. Vertical Offset Setting - an index into the three dimensional matrix defining 

the row where attenuation starts. 

2. Horizontal Offset Setting - an index into the three dimensional matrix 

defining the element within the vertical offset setting's row where attenuation 

starts. 

3. Number of Test Iterations - the number of attenuation events to conduct at 

the given vertical and horizontal offset setting pair. 

3.6.3 Methodology 

Experiment 2 uses the same quantum signal and optical fiber characteristics 

established in Experiment 1, however, the total photon count for each picosecond is now 

defined by a photon pulse profile input file representative of Figure 13 above. 
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For Experiment 2, all parameters defined in Experiment 1 are fixed for 

Experiment 2. 

The variable parameters for Experiment 2 include the lateral offset attenuator's 

vertical and horizontal offset settings as well as the number of test iterations. 

To test the accuracy of the lateral offset attenuator model, a quantum signal 

source provides an identical photon pulse to the attenuator defined in a photon pulse 

profile file with 400 picoseconds of photon counts roughly matching the photon pulse 

profile given in Figure 13 above.  The total photon count for all picoseconds in the file is 

581,730 photons. 

Next, the attenuator's vertical and horizontal offset settings are incremented from 

zero to their maximum values in increments of 1.  At each setting, the average number of 

photons passed through the attenuator unattenuated is recorded for 1, 10, 100, and 1,000 

test iterations to view statistical variance between increasing numbers of attenuation 

events.  The resulting attenuated photon count is converted to total energy by multiplying 

by the energy of a single photon defined by Equation 7 above and then to power by 

dividing by the pulse's duration.  The resulting power is converted to decibels and 

compared to the expected attenuation amounts calculated using the simplified equation 

for attenuation defined by Equation 11 above. 

3.6.4 Assumptions and Limitations 

The photon pulse model is assumed to simulate an actual QKD source closely 

enough to allow accurate attenuation results with the accompanying assumption the 

lateral offset attenuator model accurately simulates the behavior of a real world lateral 

offset attenuator implemented as functioning by means of geometrical misalignments. 
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The photon pulse is assumed to arrive at the attenuator through step indexed 

optical fiber operating in single-mode and individual photons traveling through its cross-

section are assumed to remain within their discrete channel as they cross the optical 

junction and not migrate between channels until after the junction. 

Using an unsigned element size of one byte, the number of photons per element in 

the matrix is limited to 255.  The overall size of the matrix is limited by the simulation 

environment. 

3.6.5 Expected Results 

While there are several assumptions and approximations incorporated into both 

the photon pulse and attenuator models reducing their fidelity from the actual physical 

processes governing the interactions observed with real physical systems, it's expected 

the software models represent these physical systems enough to generate results in line 

with the mathematical calculations derived from Equation 11 above.  The random 

elements associated with generating the photon pulse are expected to produce minimal 

variance in the final attenuated photon pulse. 

A successful experiment will result in a number of attenuation events throughout 

the range of the attenuator's lateral offset settings by which the accuracy of the attenuator 

model will be characterized by statistical analysis. 

3.7 Summary 

This chapter started with a summary of the simulation environment and went on 

to describe a three dimensional particle based model for representing a QKD quantum 

signal source as well as an algorithmic process for developing one.  Taking this pulse 
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model as a basis, an optical attenuator using lateral offset misalignments was described.  

An experiment to derive efficient dimensions for modeling the photon pulse was 

presented along with an experiment to characterize the accuracy of the attenuator using 

the photon pulse model. 

IV.  Analysis and Results 

4.1 Overview 

This section details the empirical results obtained from Experiments 1 and 2 along 

with an analysis of their impact on the research questions posed in this paper. 

4.2 Experiment 1 Results 

Tables 2 through 7 below present the results of Experiment 1 with an increasing 

outer radial limit and number of regions until the last row indicates an outer radial 

limit/number of regions pair producing an innermost region capable of containing the 

photon counts expected at peak power from the quantum signal source: 
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Table 2:  Experiment 1 Results - Outer Radial Limit = 4  10-6 m 

Outer 
Radial 
Limit 
(m) 

Number 
of 

Regions 

Innermost 
Region 

Percentage

Outermost 
Region 

Percentage

Number 
of Outer 
Elements

Innermost 
Region 
Photons 

Outermost 
Region 
Photons 
for One 
Element 

4x10-6 1 92.581511 7.418489 16 6105.750650 30.578084

4x10-6 2 62.800126 7.418489 24 4141.668310 20.385390

4x10-6 3 44.826155 7.418489 32 2956.284922 15.289042

4x10-6 4 34.466844 7.418489 40 2273.088362 12.231234
 

 

 

Table 3:  Experiment 1 Results - Outer Radial Limit = 6  10-6 m 

Outer 
Radial 
Limit 
(m) 

Number 
of 

Regions 

Innermost 
Region 

Percentage

Outermost 
Region 

Percentage

Number 
of Outer 
Elements

Innermost 
Region 
Photons 

Outermost 
Region 
Photons 
for One 
Element 

6x10-6 1 99.259825 0.740175 16 6546.185459 3.050909

6x10-6 2 81.946302 0.740175 24 5404.358617 2.033939

6x10-6 3 62.800126 0.740175 32 4141.668310 1.525454

6x10-6 4 49.685642 0.740175 40 3276.768090 1.220364

6x10-6 5 40.779359 0.740175 48 2689.398726 1.016970

6x10-6 6 34.466844 0.740175 56 2273.088362 0.871688
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Table 4:  Experiment 1 Results - Outer Radial Limit = 8  10-6 m 

Outer 
Radial 
Limit 
(m) 

Number 
of 

Regions 

Innermost 
Region 

Percentage

Outermost 
Region 

Percentage

Number 
of Outer 
Elements

Innermost 
Region 
Photons 

Outermost 
Region 
Photons 
for One 
Element 

8x10-6 1 99.964430 0.03557 16 6592.654159 0.146615

8x10-6 2 92.581511 0.03557 24 6105.750650 0.097743

8x10-6 3 76.607709 0.03557 32 5052.278409 0.073308

8x10-6 4 62.800126 0.03557 40 4141.668310 0.058646

8x10-6 5 52.488940 0.03557 48 3461.645593 0.048872

8x10-6 6 44.826155 0.03557 56 2956.284922 0.041890

8x10-6 7 39.004288 0.03557 64 2572.332794 0.036654

8x10-6 8 34.466844 0.03557 72 2273.088362 0.032581
 

 

 

Table 5:  Experiment 1 Results - Outer Radial Limit = 9  10-6 m 

Outer 
Radial 
Limit 
(m) 

Number 
of 

Regions 

Innermost 
Region 

Percentage

Outermost 
Region 

Percentage

Number 
of Outer 
Elements

Innermost 
Region 
Photons 

Outermost 
Region 
Photons 
for One 
Element 

9x10-6 1 99.994113 0.005887 16 6594.611752 0.024265

9x10-6 2 95.542629 0.005887 24 6301.036383 0.016177

9x10-6 3 81.946302 0.005887 32 5404.358617 0.012133

9x10-6 4 68.477928 0.005887 40 4516.119352 0.009706

9x10-6 5 57.829231 0.005887 48 3813.837784 0.008088

9x10-6 6 49.685642 0.005887 56 3276.768090 0.006933

9x10-6 7 43.396555 0.005887 64 2862.002802 0.006066

9x10-6 8 38.444771 0.005887 72 2535.432647 0.005392

9x10-6 9 34.466844 0.005887 80 2273.088362 0.004853
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Table 6:  Experiment 1 Results - Outer Radial Limit = 10  10-6 m 

Outer 
Radial 
Limit 
(m) 

Number 
of 

Regions 

Innermost 
Region 

Percentage

Outermost 
Region 

Percentage

Number 
of Outer 
Elements

Innermost 
Region 
Photons 

Outermost 
Region 
Photons 
for One 
Element 

10x10-6 1 99.999194 0.000806 16 6594.946844 0.003322

10x10-6 2 97.437441 0.000806 24 6425.999234 0.002215

10x10-6 3 86.322083 0.000806 32 5692.941374 0.001661

10x10-6 4 73.554345 0.000806 40 4850.909053 0.001329

10x10-6 5 62.800126 0.000806 48 4141.668310 0.001107

10x10-6 6 54.309110 0.000806 56 3581.685805 0.000949

10x10-6 7 47.631040 0.000806 64 3141.267088 0.000831

10x10-6 8 42.312816 0.000806 72 2790.530215 0.000738

10x10-6 9 38.008038 0.000806 80 2506.630106 0.000664

10x10-6 10 34.466844 0.000806 88 2273.088362 0.000604
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Table 7:  Experiment 1 Results - Outer Radial Limit = 11  10-6 m 

Outer 
Radial 
Limit 
(m) 

Number 
of 

Regions 

Innermost 
Region 

Percentage 

Outermost 
Region 

Percentage

Number 
of Outer 
Elements

Innermost 
Region 
Photons 

Outermost 
Region 
Photons 
for One 
Element 

11x10-6 1 99.999909 0.000091 16 6594.993999 0.000375

11x10-6 2 98.591245 0.000091 24 6502.092608 0.000250

11x10-6 3 89.830308 0.000091 32 5924.308813 0.000188

11x10-6 4 78.036962 0.000091 40 5146.537644 0.000150

11x10-6 5 67.390471 0.000091 48 4444.401562 0.000125

11x10-6 6 58.683752 0.000091 56 3870.193444 0.000107

11x10-6 7 51.696852 0.000091 64 3409.407389 0.000094

11x10-6 8 46.062328 0.000091 72 3037.810532 0.000083

11x10-6 9 41.463205 0.000091 80 2734.498370 0.000075

11x10-6 10 37.657682 0.000091 88 2483.524128 0.000068

11x10-6 11 34.466844 0.000091 96 2273.088362 0.000022
 

 

 

For each of Tables 2 through 7, the first column represents the outer radial limit 

variable parameter.  Each table summarizes its data for this parameter, respectively.  The 

second column presents the number of regions variable parameter starting from 1 and 

incrementing by 1 until the number of innermost photons in column 6 reaches a level 

representable by the innermost region's storage capacity.  The third column identifies the 

percentage of the total photon count for a single picosecond at peak power the innermost 

region must contain to accurately represent the mode field diameter profile.  The fourth 

column identifies the percentage of the total photon count for a single picosecond at peak 

power the outermost region must contain to accurately represent the mode field diameter 
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profile.  The fifth column identifies the number of individual elements in the outermost 

region given the number of regions defined in column 2.  The sixth column identifies the 

number of photons the innermost region must contain to accurately represent the mode 

field diameter profile.  The seventh column identifies the average number of photons 

contained in a single element of the outermost region for a single picosecond at peak 

power. 

The innermost region of the photon pulse is always the most limiting as compared 

to any other region's photon capacity as it always contains the highest percentage of 

photons and the lowest number of elements.  By design, the innermost region always 

contains 9 elements.  Multiplying each of these elements by the storage capacity of an 

unsigned element size of 1 byte results in a peak photon capacity of 9 elements  255 

photons/element or 2,295 photons the innermost region can accommodate.  It was 

previously shown the quantum signal at peak power generates 6,595 photons/picosecond.  

Column 6 of each table results from multiplying this peak photon count by column 3's 

percentage.  Of note for each table, the innermost region becomes viable when the 

number of regions equals the outer radial limit's mantissa with the photon count 

consistently reaching 2273.088362 photons in all cases as demonstrated in Figure 17 

below: 
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Figure 17:  Photon Count In Innermost Region as a Function of Outer Radial Limit and Number of 
Regions 

 

 

 

Figure 17 illustrates how increasing outer radial limit and number of regions results in 

photon counts more consistently resembling the Gaussian distribution approximation 

used for calculating intensity. 

Column 4 of each table shows the percentage of photons in the outermost region 

is strictly a function of the outer radial limit used.  Of note for each table, while column 7 

shows that increasing the number of regions and subsequently the number of outermost 

region elements decreases the average photon per element in the outermost region, the 

effect is significantly smaller than increasing the outer radial limit.  Even with 500 
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regions defined, the average photon count per element only falls to 0.122 when the outer 

radial limit is equal to the fiber core's radius. 

Instead, an efficient balance between outer radial limit and number of regions is 

found by observing the last entry of column 7 for the viable representations shown in the 

last row of each table.  In the case of Tables 2 and 3, the average photon count for a 

single element in the outermost region stays above the target 0.1 at 12.23 and 0.87, 

respectively.  These are obviously poor candidates.  Table 4 with an outer radial limit of 8 

microns, or double the fiber core's radius, is the first candidate with a column 7 value 

below the target value of 0.1 at 0.03.  While this is certainly a fully viable pair of outer 

radial limit and number of regions parameters to support the quantum signal's peak 

power, the average in column 7 is for a single picosecond.  The remaining 399 

picoseconds in the quantum signal's pulse duration may add enough photons to the 

average such that the total exceeds the target 0.1 per quantum signal. 

To resolve the entire pulse duration, a worst case scenario of peak power over the 

entire pulse duration can be assumed.  Now, the average photon count for a single 

picosecond times the pulse duration becomes 0.032581 photons/picosecond  400 

picoseconds or 13.0324  photons.  This makes the pair of outer radial limit of 8 microns 

and 8 number of regions parameters unacceptable for the worst case scenario.  Similar 

calculations for 9 and 10 micron outer radial limits with 9 and 10 number of regions 

respectively results in average photon counts of 1.9412 and 0.2416, respectively. 

It is not until the outer radial limit of 11 microns with 11 number of regions 

occurs in Table 7 that a value of 0.000022 photons/picosecond  400 picoseconds or 

0.0088 photons is attained and a fully compliant photon pulse representation able to 
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handle the quantum signal's peak output power with its innermost region and an 

outermost region able to return less than the target photon count of 0.1 per quantum 

signal is identified. 

The resulting region percentages for this outer radial limit and number of regions 

parameter pair are detailed in Table 8 below which provides a region by region 

breakdown of percentages to accurately model the mode field diameter distribution with 

the defined quantum source and optical fiber assumptions of Experiment 1: 

 

 

 

Table 8:  Percentage of Total Photon Count By Region For Outer Radial Limit and Number of 
Regions Equal to 11 

Region's Radial 
Range (m) 

Percent of Total 
Photon Count 

0.00 to 1.00 x10-6 34.466844

1.00 to 2.00 x10-6 28.333282

2.00 to 3.00 x10-6 19.146176

3.00 to 4.00 x10-6 10.635208

4.00 to 5.00 x10-6 4.855931

5.00 to 6.00 x10-6 1.822385

6.00 to 7.00 x10-6 0.562112

7.00 to 8.00 x10-6 0.142492

8.00 to 9.00 x10-6 0.029683

9.00 to 10.00 x10-6 0.005081

10.00 to 11.00 x10-6 0.000715

11.00 to 62.50 x10-6 0.000091



 

55 
 

4.3 Experiment 2 Results 

To analyze the results of Experiment 2, the number of photons remaining 

following an attenuation were added up and averaged for a set of 1, 10, 100, and 1,000 

iterations, multiplied by the energy per photon defined by Equation 3 above, and divided 

by the duration of the quantum signal source to derive an overall attenuated power for the 

given quantum signal source.  Using this resulting power, an actual attenuation amount in 

decibels was calculated using Equation 14 below: 

10	 log                                                 (14) 

where 

             = power following attenuation (J/sec) 

             = power before attenuation (J/sec) 

To start, the power into the attenuator from the quantum signal source was 

defined as (581,730 photons  1.516  10-19 J/photon)  400  10-12 seconds for an 

unattenuated power of 0.000220529537 J/sec.  This was an average as the actual power 

varied from picosecond to picosecond consistent with the photon pulse profile input file 

used. 

The full range of offset settings with dimensions set as a 25 by 25 matrix results 

in 252 or 625 unique combinations of vertical and horizontal offset pairs for every test 

iteration.  An accompanying CD contains the full output results of Experiment 2.  Table 9 

below lists a subset of those results for each vertical offset with a corresponding 

horizontal offset setting of 0 for the four sets of test iterations run for Experiment 2: 
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Table 9:  Experiment 2 Attenuator Result Statistics (Partial) 

Lateral 
Offset 
Settings 
(Vertical, 
Horizontal) 

Average of 
1000 

Iterations 
(Photons) 

Average of 
100 

Iterations 
(Photons) 

Average of 
10 

Iterations 
(Photons) 

1 Iteration 
(Photons) 

Difference 
Between 
the Four 
Sets 

(Photons) 

Difference 
Between 
1000 and 

100 
(Photons) 

0, 0  0.000  0.000 0.000 0.000 0.000  0.000

1, 0  0.131  0.230 0.400 0.000 0.400  0.099

2, 0  0.896  0.700 0.100 0.000 0.896  0.196

3, 0  6.365  5.010 7.600 4.000 3.600  1.355

4, 0  40.309  38.100 41.000 29.000 12.000  2.209

5, 0  195.756  195.570 196.800 201.000 5.430  0.186

6, 0  881.787  882.710 867.800 898.000 30.200  0.923

7, 0  3553.648  3569.980 3511.500 3546.000 58.480  16.332

8, 0  11719.642  11718.180 11776.200 11656.000 120.200  1.462

9, 0  31627.353  31634.660 31576.300 31539.000 95.660  7.307

10, 0  72097.575  72099.520 72094.300 72169.000 74.700  1.945

11, 0  142716.080  142693.090 142655.900 142672.000 60.180  22.990

12, 0  239996.529  239966.500 239963.400 240027.000 63.600  30.029

13, 0  336833.855  336810.460 336889.800 336842.000 79.340  23.395

14, 0  433316.380  433330.660 433245.600 433448.000 202.400  14.280

15, 0  504753.070  504738.830 504788.800 504739.000 49.970  14.240

16, 0  546395.942  546385.230 546388.800 546299.000 96.942  10.712

17, 0  567753.809  567760.030 567714.000 567771.000 57.000  6.221

18, 0  577018.695  577024.030 577042.600 577005.000 37.600  5.335

19, 0  580337.540  580332.310 580306.400 580325.000 31.140  5.230

20, 0  581395.905  581383.360 581403.000 581395.000 19.640  12.545

21, 0  581666.074  581666.230 581669.000 581676.000 9.926  0.156

22, 0  581719.474  581721.240 581719.000 581721.000 2.240  1.766

23, 0  581728.479  581728.680 581729.500 581729.000 1.021  0.201

24, 0  581729.848  581729.880 581729.500 581730.000 0.500  0.032

25, 0  581730.000  581730.000 581730.000 581730.000 0.000  0.000

 

 

 

Table 9 above lists a subset of the results of Experiment 2.  The first column lists the 

vertical and horizontal offset setting used for that row's data.  Columns two through five 

each list the average number of photons remaining from the original quantum signal 



 

57 
 

source following attenuation for 1,000, 100, 10, and 1 iterations, respectively.  Column 

six lists the largest difference between the four test runs and column seven lists the 

difference between the 1,000 and 100 test runs. 

By way of comparison, the largest difference between the test runs was 239 

photons occurring at vertical and horizontal offset settings of 10 and 7 between the 

average of 10 iterations and 1 iteration, respectively.  The mode difference across all sets 

was 1 photon and 0 between the 1,000 and 100 averages.  Likewise, the mean difference 

between all sets was 39 photons and 8 between the 1,000 and 100 iteration averages.  By 

design, the same number of photons are supplied in every photon pulse, but these 

numbers provide evidence their distribution is consistent between photon pulses.  Figures 

18 through 20 below present the standard deviations for each pair of lateral offset settings 

for the 10, 100, and 1,000 test iteration runs: 
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Figure 18:  Standard Deviations for Lateral Offset Settings - 10 Iterations 

 

 

 

 

Figure 19:  Standard Deviations for Lateral Offset Settings - 100 Iterations 
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Figure 20:  Standard Deviations for Lateral Offset Settings - 1000 Iterations 
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outermost region is reached.  The outermost region contains the residual percentage of 

photons not explicitly contained in prior regions per the Gaussian distribution.  This 

makes its effective dimensions from the previous region's boundary to the coating which 

equates to a radial limit of 11 microns to 62.5 microns for Experiment 2.  Because this 

region's dimensions are not linear as compared to all the other regions and the number of 

photons it contains is usually no more than one, it's in a sense an outlier and its 

dimensions are approximated by a comparatively small reduction to the lateral offset total 

of the linear regions. 

Excluding the outermost region, with 11 regions defined and an outer radial limit 

of 11 microns, the side of an element in these regions can be calculated using Equations 

12 and 13 above.  The area of the circle for these regions is ∙ (11  10-6 meters)2 or 

3.801  10-10 square meters.  There are a total of 232 or 529 elements in these regions.  

Dividing the circle's area by the total number of elements gives the area for a single 

element as 3.801  10-10  529 or 7.1859  10-13 square meters.  Taking the square root 

of this value yields the side of an individual element as 8.477  10-7 meters.  Finally, 

dividing this value by the dimension of the matrix provides the value used for each lateral 

offset setting increment as 8.477  10-7  25 or 3.39  10-8 meters. 

Starting with a lateral offset of 0 meters associated with attenuator settings of 

vertical 24 and horizontal 25, for each decrement of the lateral offset setting, 3.39  10-8 

meters is added to the total estimated lateral offset and a corresponding expected 

attenuation result is calculated using Equation 11.  Table 10 below provides a subset of 

data with the horizontal offset at 0: 
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Table 10:  Experiment 2 Attenuator Comparison to Expectations (Partial) 

Lateral 
Offset 
Settings 
(Vertical, 
Horizontal) 

Average of 
1000 

Iterations 
(Photons) 

Attenuated 
Power of 1000 
Iterations (J/sec) 

Attenuator's 
Attenuation 

(dB) 

Estimated 
Lateral 

Offset (m) 

Calculated 
Attenuation 

(dB) 

0, 0  0.000  0.000000000000 Infinite Loss 0.00002119 97.15601603

1, 0  0.131  0.000000000050 66.47450165 0.00002034 89.53898437

2, 0  0.896  0.000000000340 58.12413451 0.00001950 82.23285197

3, 0  6.365  0.000000002413 49.60923053 0.00001865 75.23761881

4, 0  40.309  0.000000015281 41.59319437 0.00001780 68.55328491

5, 0  195.756  0.000000074210 34.73006379 0.00001695 62.17985026

6, 0  881.787  0.000000334279 28.19357769 0.00001611 56.11731486

7, 0  3553.648  0.000001347162 22.14047054 0.00001526 50.36567871

8, 0  11719.642  0.000004442830 16.95807116 0.00001441 44.92494181

9, 0  31627.353  0.000011989695 12.64658615 0.00001356 39.79510416

10, 0  72097.575  0.000027331657 9.06800804 0.00001272 34.97616577

11, 0  142716.080  0.000054102610 6.10248553 0.00001187 30.46812663

12, 0  239996.529  0.000090980908 3.84516500 0.00001102 26.27098673

13, 0  336833.855  0.000127691221 2.37305725 0.00001017 22.38474609

14, 0  433316.380  0.000164267032 1.27916355 0.00000932 18.80940470

15, 0  504753.070  0.000191348153 0.61642492 0.00000848 15.54496256

16, 0  546395.942  0.000207134657 0.27213996 0.00000763 12.59141968

17, 0  567753.809  0.000215231266 0.10561405 0.00000678 9.94877604

18, 0  577018.695  0.000218743516 0.03531577 0.00000593 7.61703166

19, 0  580337.540  0.000220001666 0.01040797 0.00000509 5.59618652

20, 0  581395.905  0.000220402884 0.00249493 0.00000424 3.88624064

21, 0  581666.074  0.000220505303 0.00047727 0.00000339 2.48719401

22, 0  581719.474  0.000220525547 0.00007858 0.00000254 1.39904663

23, 0  581728.479  0.000220528960 0.00001136 0.00000170 0.62179850

24, 0  581729.848  0.000220529479 0.00000113 0.00000085 0.15544963

25, 0  581730.000  0.000220529537 0.00000000 0.00000000 0.00000000

 

 

 

Table 10 above lists a subset of the comparisons between the attenuation returned by the 

models along with the attenuations predicted by Equation 11.  Column one lists the  
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lateral offset settings for that row's data.  Column two lists the average number of 

photons that passed through the attenuator model for the 1,000 test iterations run and 

column three converts that photon count into power.  Column four uses Equation 14 to 

convert column three's power to decibels.  Column five lists the estimated lateral offset 

associated with column one's lateral offset settings.  Finally, column six uses Equation 11 

to calculate an expected attenuation amount for column five's corresponding lateral 

offset.  An accompanying CD contains the full output results of Experiment 2. 

Figure 21 below illustrates a direct comparison of the amount of attenuation 

resulting from the attenuator through its range of lateral offset settings with the 

corresponding calculated attenuation resulting from the estimated lateral offset: 

 

 

 

 

Figure 21:  Experiment 2 Attenuation Direct Comparison 
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Figure 18 clearly shows a significant divergence between the amount of 

attenuation obtained from the photon pulse and attenuator models versus the expected 

attenuation obtained from Equation 11 above.  Initially, the models' results don't attenuate 

as much as the mathematical result and reach infinite loss much sooner. 

One possibility for the divergence in the rate of attenuation growth lies in how the 

attenuator model works.  In the model, photons in all regions are treated equally with 

regard to being attenuated as the only criterion is whether an element lies within or 

outside the lateral offset settings.  This accounts for the initially gradual rate of 

attenuation.  The outer regions contain the fewest number of photons, so as they fall 

outside the lateral offset settings, we don't see much of an increase in the rate of 

attenuation.  In contrast, the formula attenuation rate starts growing immediately and 

more rapidly as compared to model.  This implies the attenuation due to misalignment of 

the core regions has a greater impact than misalignment of the cladding regions. 

Another possibility for divergence between the model and the formula may lie in 

the approximation of the outermost region's radial range accounting for the remainder of 

the fiber from the outer radial limit to the coating.  The typical optical fiber for single-

mode operation has a cladding diameter of 125 microns outside the 8 micron core 

diameter.  With near infinite loss not occurring with the formula until around 119.25 

microns as compared to roughly 21 microns with the model, the range of the model's 

results appear compressed because of the non-linear outmost region. 

In addition, the distribution of photons uses the Gaussian approximation for 

intensity for all regions instead of switching to the exponential approximation at some 

point within the cladding.  For 1,550 nanometer light in optical fiber with a core diameter 
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of 9 microns, the Gaussian and exponential approximations begin to diverge around 8 

microns distance from the core's center or just under double the core's radius.  If 1,310 

nanometer light in an optical fiber with core diameter of 8 microns experiences a similar 

divergence point of just prior to double the core's radius, the 8th through 11th regions of 

the photon pulse model would see their overall photon count percentages increase with a 

corresponding decrease in the photon count percentage for the outermost region.  This 

would definitely have an effect on attenuation results due to the redistribution of photons 

out of the outermost region into the affected regions. 

Finally, the divergence may lie in how the attenuation values are derived.  In the 

case of the mathematical equation, the end result is strictly a function of the lateral offset 

for Experiment 2's conditions because the lateral offset is the only variable parameter.  In 

contrast, the attenuation for the models is relative and based on the ratio of the output 

power to the input power.  Given the models' results are discrete, there is a limit on the 

attenuation's magnitude because the numerator of Equation 14 is limited to the power 

supplied by a single photon while the denominator is fixed at the power supplied by the 

quantum signal source used for Experiment 2. 

Figures 22 and 23 below compare the attenuator's results to a normalized version 

of the mathematical expectations over a full range of 0 meters of lateral offset and no 

attenuation up to the amount of lateral offset causing infinite loss: 
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Figure 22:  Experiment 2's Attenuation in dBs 

 

 

 

 

Figure 23:  Mathematical Attenuation Normalized To Experiment 2's Results 
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While the attenuation results still diverge from the expected amounts predicted by 

the mathematical formula, the models provide a range of operation where the attenuator 

supplies the number of photons suitable for QKD simulation.  That is, the models provide 

up to one photon with a probability dependent on lateral offset settings. 

4.4 Summary 

This chapter presented the results for the experiments defined in chapter 3.  

Experiment 1 looked at defining the spatial dimensions for modeling the quantum signal 

as a distribution of photons in a manner consistent with the mode field diameter such that 

an attenuator model using the photon pulse model would be able to return the numbers of 

photons expected from current QKD implementations.  A current QKD quantum source 

was chosen and dimensions of 25 by 25 elements was determined to meet the needs 

identified for a successful photon pulse.  Using this photon pulse model, Experiment 2 

looked at supplying the attenuator model a consistent photon pulse and comparing the 

results of its functionality against those expected as calculated using a mathematical 

formula based on lateral offset.  Those comparisons were found to diverge by a 

significant amount with possible causes attributed to differences in how parts of the 

models were implemented and in how the values were derived. 
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V.  Conclusions and Recommendations 

5.1 Overview 

This chapter summarizes the findings drawn from analyzing the results of chapter 

4, proposes the significance of the research, and recommends activities for future 

research related to this research's efforts. 

5.2 Conclusions 

This research looked at characterizing the accuracy of a QKD quantum channel 

attenuator using a particle based model of the quantum signal source as compared to the 

results expected from a mathematical formula describing the expected functionality of 

such an attenuator.  Based off the researched characteristics of a photon pulse traveling 

through on optical fiber in single-mode operation, a model for representing the photon 

pulse as a group of individual photons placed in a three dimension model was developed 

and used as the source for a series of attenuation events.  To add realism, the distribution 

of photons traveling in an optical fiber in single-mode operation was examined and 

determined to conform to a Gaussian distribution measured by the mode field diameter. 

Using this distribution, a spatial model was developed made of concentric regions 

to represent individual cross-sections of an optical fiber.  Using a Matlab script, a series 

of parameters were varied to find dimensions for the model that would be able to contain 

the number and distribution of photons described by the mode field diameter.  In 

addition, the model was checked to see if the dimensions chosen would allow an optical 

attenuator using geometrical misalignments, specifically lateral offset misalignments, to 

return the numbers of photons expected from current QKD implementations. 
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Comparisons of the attenuation levels generated by the attenuator model and the 

expected attenuation levels predicted by the mathematical formula showed significant 

differences.  It's assumed design decisions in either the photon pulse model, the 

attenuator model, or both caused these observed divergences. 

While the attenuation levels generated do not conform to the expected levels 

predicted by the mathematical formula, there is a range of operation where the models 

developed provide the number of photons applicable for QKD simulations. 

5.3 Significance of the Research 

QKD implementations rely on transmitting the elementary particles of 

electromagnetic signals between parties securely.  Since these photons can be described 

as both waves and particles, developers must decide whether to represent the signals as 

one or the other when modeling such a system.  Due to the sheer number of total photons 

emitted by today's quantum signal sources, it would be highly resource intensive to work 

with individual photons starting with the quantum channel's signal source. 

An alternative to this is to treat the initial quantum signal source as a single group 

of photons or photon pulse, reduce their total number down to the levels used in QKD 

implementations, and then work with this significantly reduced number of individual 

photons. 

While this research failed to accurately model the initial components of the 

quantum channel as predicted by the mathematical formula defining attenuation in an 

optical junction, the models developed have a range of operation suitable for QKD 

simulation and are based on the established physical processes defining their 
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characteristics.  The author believes the models represent a set of initial software 

components useful for additional development and testing for future particle-only model 

simulations in an overarching QKD software implementation. 

  In a discrete event simulation environment, one event could supply the photon 

pulse containing the time dimension and the attenuator could be used to schedule 

individual photons to remaining quantum channel components with relative times 

attached to each.  Resolution of the time component would be down to the photon pulse's 

time dimension which is picoseconds for this research. 

5.4 Recommendations for Future Research 

This research looked at characterizing the accuracy of an optical attenuator based 

on an amount of lateral offset for defining its functionality using a particle-only model to 

represent the quantum signal source.  Possible related research efforts include: 

1. Modifications to the parameters defining the photon pulse model may 

provide insight into improved accuracy of the lateral offset attenuator's 

results.  The consolidation of the majority of the cladding into a non-linear 

region may have skewed the attenuator's results.  One possible avenue may 

involve defining the matrix's dimensions based off the mathematical formula 

for attenuation directly instead of dimensions based off the distribution of 

photons within an optical fiber cross-section.  Another possibility involves 

retaining an overall circular model versus the square model approximation 

used in this research.  Finally, modifications to the attenuator model to 
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attenuate photons based off of whether they're passing from a core region to a 

cladding region may improve its overall accuracy. 

2. Modeling additional quantum channel components such as beam splitters and 

interferometers with the particle-only model to identify benefits and trade-

offs of its use.  Modeling of quantum channel components downstream of the 

attenuator may benefit from individual photons as particles versus wave 

approximations.  A particle-only signal model alternative to wave modeling 

may uncover QKD simulation anomalies not immediately evident with wave 

models. 

5.5 Summary 

This chapter summarized the results of this research.  After stating the overall 

objectives, the models for a QKD quantum signal as a representative distribution of 

photons in a three dimensional matrix and the lateral offset attenuator that used it were 

briefly outlined.  The results of the experiments performed were described and the 

attenuator's accuracy was characterized as diverging unacceptably from expected results.  

While these results are inconsistent with the mathematical formula, there is a range of 

operation suitable for simulation in a QKD software implementation. 

Next, highlights of the significance of the research included the development of 

an alternative quantum signal model to wave modeling of the photon pulse as well as the 

possibility of using the optical attenuator as the scheduler of photon events in a discrete 

event simulation environment. 
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Finally, some recommendations for future research were offered such as an 

improvement on the accuracy of the models developed and an expansion to other 

components in the quantum channel. 
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Appendix A:  Photon Pulse and Lateral Offset Attenuator Code 

/******************************************************************************* 
 * LatOffAttenuator.cpp :  A computer program to model an optical attenuator by 
 *  checking a three dimensional data structure used to represent a collection 
 *  of individual photons and reducing their total amount using the concept of 
 *  geometrical misalignment between opposing faces of an optical junction. 
 ******************************************************************************/ 
 
#include "dSFMT.h" //Mersenne Twister pseudo random number generator. 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
// The MAX_JUNCTION_DIMENSION represents the size of the sides of a square to 
//  define the width and height of the face of an optical junction.  Defined to 
//  be an odd value so the innermost region always has nine elements (three 
//  rows of three elements). 
#define MAX_JUNCTION_DIMENSION 25 
 
// The time dimension of a three-dimensional matrix containing a photon 
//  pulse.  MAX_PULSE_DEPTH represents the maximum pulse duration possible in 
//  picoseconds.  With a MAX_JUNCTION_DIMENSION of 25, MAX_PULSE_DEPTH can be 
//  set to a little over 1600 within the simulation environment. 
#define MAX_PULSE_DEPTH 401 
 
// Symbolic constant to set how many attenuation experiments to perform for data 
//  collection. 
#define NUMBER_OF_TEST_RUNS 1000 
 
 
/******************************************************************************* 
 * This function creates a uniformly distributed photon pulse in a three 
 *  dimensional matrix by setting each element to the same value.  Useful for 
 *  clearing the matrix and testing purposes. 
 ******************************************************************************/ 
void populateUniformPhotonPulse(unsigned char bytPhotonPulse[] 
            [MAX_JUNCTION_DIMENSION] 
            [MAX_JUNCTION_DIMENSION], 
            const long lngPulseDuration, 
            const unsigned char bytNumberOfPhotons) 
{  
 // Loop counters for passing through the photon pulse matrix. 
 unsigned short ushtDepthCounter = 0; 
 unsigned short ushtVerticalCounter = 0; 
 unsigned short ushtHorizontalCounter = 0; 
 
 /*************************************************************************** 
  * End of the local variables and start of the function's functionality. 
  */ 
 
 // Cycle through each element of the photon pulse and set it starting with 
 //  the time dimension. 
 for (ushtDepthCounter; 
    ushtDepthCounter < lngPulseDuration; 
    ushtDepthCounter++) 
 { // Reset the vertical to the top row. 
  ushtVerticalCounter = 0; 
 
  for (ushtVerticalCounter; 
    ushtVerticalCounter < MAX_JUNCTION_DIMENSION; 
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    ushtVerticalCounter++) 
  { // Reset the horizontal for the first column on the left. 
   ushtHorizontalCounter = 0; 
 
   for (ushtHorizontalCounter; 
      ushtHorizontalCounter < MAX_JUNCTION_DIMENSION; 
      ushtHorizontalCounter++) 
   { // Place a constant number of photons in this element. 
    bytPhotonPulse[ushtDepthCounter][ushtVerticalCounter] 
         [ushtHorizontalCounter] = bytNumberOfPhotons; 
   } 
 
  } 
 
 } 
 
} 
 
 
/******************************************************************************* 
 * This function creates a photon pulse in a three dimensional matrix where the 
 *  horizontal and vertical dimensions of an optical joint have been converted 
 *  into a square model approximation and segmented into discrete elements 
 *  defining channels photons pass through at the optical joint.  The third 
 *  dimension represents time in picoseconds.  The number of photons per 
 *  picosecond is spread through concentric regions of increasing photon count 
 *  in a manner consistent with the general shape of the mode field diameter as 
 *  measured from the outer edges of the matrix's horizontal and vertical 
 *  dimensions towards the center.  Each region represents a discrete amount of 
 *  distance from the fiber's core and contains a percentage of the total photon 
 *  count, currently determined in a separate Matlab script and hardcoded here. 
 *  An individual photon is represented as the number one.  Using an unsigned 
 *  char amount of storage, each matrix element can contain up to 255 photons. 
 ******************************************************************************/ 
long populatePhotonPulse(unsigned char bytPhotonPulse[][MAX_JUNCTION_DIMENSION] 
       [MAX_JUNCTION_DIMENSION]) 
{ // Index for the first dimension of the photon pulse matrix and the value 
 //  returned by the function. 
 unsigned short ushtCurrentPicosecond = 0; 
 
 // Placeholder for the upper left corner of the current region and used as a 
 //  fixed dimension when accessing into the photon pulse matrix.  Also used 
 //  as an index into the mode field diameter profile array. 
 unsigned char bytRegionCounter = 0; 
 
 // Placeholder for the bottom right corner of the current region and used as 
 //  a fixed dimension when accessing into the photon pulse matrix. 
 unsigned char bytBottomRightPlaceholder = 0; 
 
 // Index into the photon pulse matrix for the dimension that is changing. 
 short shtMatrixIndex = 0; 
 
 // Number of concentric regions defining the face of an optical junction not 
 //  including the innermost region of nine elements. 
 unsigned char bytNumberOfRegionsLimit = 0; 
 
 // The number of elements in the outermost region. 
 unsigned char bytElementsInOuterMostRegion = 0; 
 
 // The number of elements in the current region (as defined by 
 //  bytRegionCounter). 
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 unsigned char bytElementsInRegion = 0; 
 
 // The total number of photons to insert in the matrix this picosecond as 
 //  read from the file containing the photon pulse profile. 
 unsigned long ulngPhotonsToInsert = 0; 
 
 // The remaining number of photons left to insert in the matrix this 
 //  picosecond. 
 unsigned long ulngPhotonsLeftToInsert = 0; 
 
 // The number of photons to place in the current region. 
 unsigned long ulngPhotonsForThisRegion = 0; 
 
 // Array of percentages representing each concentric regions' amount of 
 //  photons to contain for this picosecond, consistent with the mode field 
 //  diameter of an optical fiber operating in single-mode.  Determined using 
 //  a separate Matlab script and hardcoded here. 
 double dblMFDProfile[12] = {0.00000091, 0.00000715, 0.00005081, 0.00029683, 
            0.00142492, 0.00562112, 0.01822385, 0.04855931, 
            0.10635208, 0.19146176, 0.28333282, 0.34466844}; 
 
 // Probability of adding a photon to the current element. 
 double dblProbabilityOfPhotonHere = 0.0; 
 
 // Residual probability of adding another photon to the current region. 
 double dblProbabilityOfOneMorePhoton = 0.0; 
 
 // File handle to read photon pulse profile. 
 FILE *ptrPhotonPulseProfile; 
 
 // A counter used in determing if MAX_JUNCTION_DIMENSION is odd. 
 short shtRemainingElements = MAX_JUNCTION_DIMENSION; 
 
 // Variable to store the state of the pseudo random number generator. 
 dsfmt_t PRNGState; 
 
 /*************************************************************************** 
  * End of the local variables and start of the function's functionality. 
  */ 
 
 // Initialize the pseudo random number generator's state with a seed based 
 //  off the system time. 
 dsfmt_init_gen_rand (&PRNGState, time (NULL)); 
 
 // By design, the innermost region is defined as having nine elements 
 //  requiring the MAX_JUNCTION_DIMENSION to be odd.  Check for this 
 //  condition. 
 while (shtRemainingElements > 1) 
 { // Count up the number of regions defined by MAX_JUNCTION_DIMENSION. 
  bytNumberOfRegionsLimit++; 
 
  // Subtract two elements from the running total for each region defined 
  //  by MAX_JUNCTION_DIMENSION. 
  shtRemainingElements = shtRemainingElements - 2; 
 } 
 
 // If MAX_JUNCTION_DIMENSION is odd, set the number of elements in the 
 //  outermost region and remove the innermost region from the total. 
 if (shtRemainingElements > 0) 
 { // MAX_JUNCTION_DIMENSION is odd. 
  if (bytNumberOfRegionsLimit > 1) 
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  { // Dimension is 5 or more. At least two regions are defined.  The 
   //  outermost region is separate from the innermost region. 
   //  Calculate the number of elements in the outermost region based 
   //  off the dimensions of the optical junction. 
   bytElementsInOuterMostRegion = (2 * MAX_JUNCTION_DIMENSION) + 
           (2 * (MAX_JUNCTION_DIMENSION - 2)); 
 
   // Decrement bytNumberOfRegionsLimit because innnermost region is 
   // filled up with photons differently from other regions. 
   bytNumberOfRegionsLimit--; 
  } 
  else 
  { // Dimension is less than 5 meaning less than 2 regions are defined. 
   printf ("Fewer than two regions defined.  Exiting.\n"); 
 
   // Exit function. 
   return ushtCurrentPicosecond; 
  } 
 
 } 
 else 
 { // MAX_JUNCTION_DIMENSION is even. 
  printf ("Even dimensions detected.  Exiting.\n"); 
 
  // Exit function. 
  return ushtCurrentPicosecond; 
 } 
 
 // Try to open the photon pulse profile file for reading total photon counts 
 //  per picosecond. 
 if ( (ptrPhotonPulseProfile = fopen ("LaserPulse400.csv", "r") ) == NULL) 
 { // There was a problem opening the photon pulse profile file.  Notify 
  //  the user. 
  printf ("Failed to open the laser pulse input file.\n"); 
 } 
 else 
 { // File handle was successfully created. 
  while (!feof (ptrPhotonPulseProfile)) 
  { // Haven't reached the end of the file yet.  Get next picosecond. 
   fscanf (ptrPhotonPulseProfile, "%u", &ulngPhotonsToInsert); 
 
   // Need to keep the original total of photons to insert this 
   //  picosecond read from the photon pulse profile file intact for 
   //  calculating individual region photon counts based off a 
   //  percentage of the original total, so use a separate variable for 
   //  keeping track of the running total of photons left to insert. 
   ulngPhotonsLeftToInsert = ulngPhotonsToInsert; 
 
   // Reset the top left corner index to that of the outermost 
   //  region to start filling it with this picosecond's photons.  It 
   //  also serves as the index into the mode field diameter profile 
   //  array. 
   bytRegionCounter = 0; 
 
   // Reset the bottom right corner index to one more than that of the 
   //  outermost region to start filling it with this picosecond's 
   //  photons.  It gets decrimented prior to use. 
   bytBottomRightPlaceholder = MAX_JUNCTION_DIMENSION; 
 
   // Reset the current number of elements to the number of elements  
   //  in the outermost region. 
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   bytElementsInRegion = bytElementsInOuterMostRegion; 
 
   // Cycle through each region filling it with its portion of photons 
   //  based off their mode field diameter profile percentage. 
   for (bytRegionCounter; 
      bytRegionCounter < bytNumberOfRegionsLimit; 
      bytRegionCounter++) 
   { // Set the bounds of the bottom right corner of the current 
    //  region to fill with photons. 
    bytBottomRightPlaceholder--; 
 
    // Calculate the continuous number of photons to insert in this 
    //  region. 
    dblProbabilityOfOneMorePhoton = 
        ulngPhotonsToInsert * dblMFDProfile[bytRegionCounter]; 
 
    // Convert continuous number of photons to discrete photons by 
    //  counting discrete photons until a partial photon is left. 
    while (dblProbabilityOfOneMorePhoton > 1) 
    { // Count up the number of photons to insert in this region. 
     ulngPhotonsForThisRegion++; 
 
     // Decrement the running total. 
     dblProbabilityOfOneMorePhoton--; 
    } 
 
    // Probabilistically determine if any partial photon becomes a 
    //  discrete photon and gets added to the number of photons to 
    //  insert in this region. 
    if (dsfmt_genrand_close_open(&PRNGState) < 
            dblProbabilityOfOneMorePhoton) 
    { // Add another photon to put in this region. 
     ulngPhotonsForThisRegion++; 
    } 
 
    // Ensure this region can contain the photons designated for it. 
    if (ulngPhotonsForThisRegion > (bytElementsInRegion * 255)) 
    { // There are more photons in the pulse profile than can be 
     //  inserted in this region.  Notify the user and clip the 
     //  pulse by inserting the maximum capacity in each element. 
     printf ("Excessive photons encountered.  Clipping.\n"); 
 
     // Reset the index to traverse the column downward. 
     shtMatrixIndex = bytRegionCounter; 
 
     // Traverse region downward to the end of the column. 
     for (shtMatrixIndex; 
        shtMatrixIndex <= bytBottomRightPlaceholder; 
        shtMatrixIndex++) 
     { // Set each element to the maximum photon count. 
      bytPhotonPulse[ushtCurrentPicosecond][shtMatrixIndex] 
             [bytRegionCounter] = 255; 
     } 
 
     // Reset the index to traverse the row rightward. 
     shtMatrixIndex = bytRegionCounter; 
 
     // Traverse region rightward to the end of the row. 
     for (shtMatrixIndex; 
        shtMatrixIndex <= bytBottomRightPlaceholder; 
        shtMatrixIndex++) 
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     { // Set each element to the maximum photon count. 
      bytPhotonPulse[ushtCurrentPicosecond] 
           [bytBottomRightPlaceholder] 
           [shtMatrixIndex] = 255; 
     } 
 
     // Reset the index to traverse the column upward. 
     shtMatrixIndex = bytBottomRightPlaceholder; 
 
     // Traverse region upward to the start of the column. 
     for (shtMatrixIndex; 
        shtMatrixIndex >= bytRegionCounter; 
        shtMatrixIndex--) 
     { // Set each element to the maximum photon count. 
      bytPhotonPulse[ushtCurrentPicosecond][shtMatrixIndex] 
             [bytBottomRightPlaceholder] = 255; 
     } 
 
     // Reset the index to traverse the row leftward. 
     shtMatrixIndex = bytBottomRightPlaceholder; 
 
     // Traverse region leftward to the start of the row. 
     for (shtMatrixIndex; 
        shtMatrixIndex >= bytRegionCounter; 
        shtMatrixIndex--) 
     { // Set each element to the maximum photon count. 
      bytPhotonPulse[ushtCurrentPicosecond][bytRegionCounter] 
                 [shtMatrixIndex] = 255; 
     } 
 
    } 
    else 
    { // This region has space for its photons. 
 
     // Assume mostly uniform distribution within a region by 
     //  calculating the probability of inserting a photon in any 
     //  one of its elements.  This only has an effect for sparse 
     //  regions where the number of photons to place in the 
     //  region is less than the number of elements. 
     dblProbabilityOfPhotonHere = (double) 
             ulngPhotonsForThisRegion / 
             bytElementsInRegion; 
 
     // Traverse the current region in a counterclockwise, 
     //  circuitous manner until all photons have been placed. 
     while (ulngPhotonsForThisRegion > 0) 
     { // Reset the index to traverse the left column downward. 
      shtMatrixIndex = bytRegionCounter; 
 
      // Traverse left side of region downward to the end of 
      //  the column. 
      while (ulngPhotonsForThisRegion > 0 && 
          shtMatrixIndex <= bytBottomRightPlaceholder) 
      { // Check there is room for another photon in this 
       //  element. 
       if (bytPhotonPulse[ushtCurrentPicosecond] 
             [shtMatrixIndex] 
             [bytRegionCounter] < 255) 
       { // Randomly determine whether to add a photon. 
        if (dsfmt_genrand_close_open(&PRNGState) < 
         dblProbabilityOfPhotonHere) 



 

78 
 

        { // Add a photon to this element. 
         bytPhotonPulse[ushtCurrentPicosecond] 
              [shtMatrixIndex] 
              [bytRegionCounter] = 
              bytPhotonPulse 
              [ushtCurrentPicosecond] 
              [shtMatrixIndex] 
              [bytRegionCounter] + 1; 
        
         // Decrement the remaining number of photons 
         //  to place in this region and in total. 
         ulngPhotonsForThisRegion--; 
         ulngPhotonsLeftToInsert--; 
        } 
 
       } 
 
       // Increment the while counter. 
       shtMatrixIndex++; 
      } 
 
      // Reset index to traverse the bottom row rightward. 
      shtMatrixIndex = bytRegionCounter; 
 
      // Traverse region rightward to the end of the bottom 
      //  row. 
      while (ulngPhotonsForThisRegion > 0 && 
          shtMatrixIndex <= bytBottomRightPlaceholder) 
      { // Check there is room for another photon in this 
       //  element. 
       if (bytPhotonPulse[ushtCurrentPicosecond] 
             [bytBottomRightPlaceholder] 
             [shtMatrixIndex] < 255) 
       { // Randomly determine whether to add a photon. 
        if (dsfmt_genrand_close_open(&PRNGState) < 
         dblProbabilityOfPhotonHere) 
        { // Add a photon to this element. 
         bytPhotonPulse[ushtCurrentPicosecond] 
              [bytBottomRightPlaceholder] 
              [shtMatrixIndex] = 
              bytPhotonPulse 
              [ushtCurrentPicosecond] 
              [bytBottomRightPlaceholder] 
              [shtMatrixIndex] + 1; 
        
         // Decrement the remaining number of photons 
         //  to place in this region and in total. 
         ulngPhotonsForThisRegion--; 
         ulngPhotonsLeftToInsert--; 
        } 
 
       } 
 
       // Increment the while counter. 
       shtMatrixIndex++; 
      } 
 
      // Reset index to traverse the right column upward. 
      shtMatrixIndex = bytBottomRightPlaceholder; 
 
      // Traverse region upward to the start of the column. 
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      while (ulngPhotonsForThisRegion > 0 && 
          shtMatrixIndex >= bytRegionCounter) 
      { // Check there is room for another photon in this 
       //  element. 
       if (bytPhotonPulse[ushtCurrentPicosecond] 
             [shtMatrixIndex] 
             [bytBottomRightPlaceholder] < 255) 
       { // Randomly determine whether to add a photon. 
        if (dsfmt_genrand_close_open(&PRNGState) < 
         dblProbabilityOfPhotonHere) 
        { // Add a photon to this element. 
         bytPhotonPulse[ushtCurrentPicosecond] 
              [shtMatrixIndex] 
              [bytBottomRightPlaceholder] = 
              bytPhotonPulse 
              [ushtCurrentPicosecond] 
              [shtMatrixIndex] 
              [bytBottomRightPlaceholder] 
              + 1; 
        
         // Decrement the remaining number of photons 
         //  to place in this region and in total. 
         ulngPhotonsForThisRegion--; 
         ulngPhotonsLeftToInsert--; 
        } 
 
       } 
 
       // Decrement the while counter. 
       shtMatrixIndex--; 
      } 
 
      // Reset index to traverse the top row leftward. 
      shtMatrixIndex = bytBottomRightPlaceholder; 
 
      // Traverse region leftward to the start of the row. 
      while (ulngPhotonsForThisRegion > 0 && 
          shtMatrixIndex >= bytRegionCounter) 
      { // Check there is room for another photon in this 
       //  element. 
       if (bytPhotonPulse[ushtCurrentPicosecond] 
             [bytRegionCounter] 
             [shtMatrixIndex] < 255) 
       { // Randomly determine whether to add a photon. 
        if (dsfmt_genrand_close_open(&PRNGState) < 
         dblProbabilityOfPhotonHere) 
        { // Add a photon to this element. 
         bytPhotonPulse[ushtCurrentPicosecond] 
              [bytRegionCounter] 
              [shtMatrixIndex] = 
              bytPhotonPulse 
              [ushtCurrentPicosecond] 
              [bytRegionCounter] 
              [shtMatrixIndex] + 1; 
        
         // Decrement the remaining number of photons 
         //  to place in this region and in total. 
         ulngPhotonsForThisRegion--; 
         ulngPhotonsLeftToInsert--; 
        } 
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       } 
 
       // Decrement the while counter. 
       shtMatrixIndex--; 
      } 
 
     } 
 
    } 
    // All the photons for this region have been placed.  Each 
    //  region has eight fewer elements than the previous, so 
    //  decrement by eight to set the number of elements in the next 
    //  region. 
    bytElementsInRegion = bytElementsInRegion - 8; 
   } 
 
   // Set the bounds of the bottom right corner of the remaining 
   //  region(s) to fill with photons. 
   bytBottomRightPlaceholder = MAX_JUNCTION_DIMENSION - 
          bytRegionCounter - 1; 
 
   // The remaining photons go in the innermost region(s), currently 
   //  defined as the innermost 9 elements. 
   if (ulngPhotonsLeftToInsert > (9 * 255)) 
   { // There are more photons present than can be inserted. 
    //  Notify user and clip the pulse by inserting the maximum 
    //  capacity in each element. 
    printf ("Excessive photon count encountered.  Clipping.\n"); 
 
    do 
    { 
     // Reset the index to traverse the row rightward. 
     shtMatrixIndex = bytNumberOfRegionsLimit; 
 
     // Traverse region rightward to the end of the row. 
     for (shtMatrixIndex; 
       shtMatrixIndex <= bytBottomRightPlaceholder; 
       shtMatrixIndex++) 
     { // Set each element to the maximum photon count. 
      bytPhotonPulse[ushtCurrentPicosecond][bytRegionCounter] 
              [shtMatrixIndex] = 255; 
     } 
     // Increment to fill the next row. 
     bytRegionCounter++; 
    } while (bytRegionCounter <= bytBottomRightPlaceholder); 
 
   } 
   else 
   { // The innermost region(s) can fit the remaining photons. 
 
    // Assume mostly uniform distribution within the innermost 
    //  region by calculating the probability of inserting a photon 
    //  in any one of its elements.  This only has an effect for 
    //  truly sparse photon pulses as the innermost region contains 
    //  the highest percentage of photons and the fewest elements of 
    //  any region. 
    dblProbabilityOfPhotonHere = (double) 
             ulngPhotonsLeftToInsert / 9; 
 
    // Repeatively traverse the innermost region in a top to bottom, 
    //  left to right manner until all photons have been placed. 
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    while (ulngPhotonsLeftToInsert > 0) 
    { // There are still photons left to insert.  Reset to the 
     //  first row/column of the innermost region(s). 
     bytRegionCounter = bytNumberOfRegionsLimit; 
 
     do 
     { 
      // Reset the index to traverse the row rightward. 
      shtMatrixIndex = bytNumberOfRegionsLimit; 
 
      // Traverse region rightward to the end of the row. 
      while (ulngPhotonsLeftToInsert > 0 && 
          shtMatrixIndex <= bytBottomRightPlaceholder) 
      { // Check there is room for another photon in this 
       //  element. 
       if (bytPhotonPulse[ushtCurrentPicosecond] 
             [bytRegionCounter] 
             [shtMatrixIndex] < 255) 
       { // Randomly determine whether to add a photon. 
        if (dsfmt_genrand_close_open(&PRNGState) < 
         dblProbabilityOfPhotonHere) 
        { // Add a photon to this element. 
         bytPhotonPulse[ushtCurrentPicosecond] 
              [bytRegionCounter] 
              [shtMatrixIndex] = 
              bytPhotonPulse 
              [ushtCurrentPicosecond] 
              [bytRegionCounter] 
              [shtMatrixIndex] + 1; 
        
         // Decrement the remaining number of photons 
         //  to place in the innermost region(s). 
         ulngPhotonsLeftToInsert--; 
        } 
 
       } 
       // Increment the index to fill the next element. 
       shtMatrixIndex++; 
      } 
      // Increment to fill the next row. 
      bytRegionCounter++; 
 
       // Continue until we reach the bottom of the region(s). 
     } while (bytRegionCounter <= bytBottomRightPlaceholder); 
 
    } 
 
   } 
   // Increment the time dimension prior to getting next picosecond 
   //  from the photon pulse profile file. 
   ushtCurrentPicosecond++; 
  } 
 
  // Close the photon pulse profile file. 
  fclose (ptrPhotonPulseProfile); 
 } 
 
 // ushtCurrentPicosecond gets incremented before checking for end of file, 
 //  so decrement its value before returning it.  Value is actual size and 
 //  not an upper bound for an array. 
 ushtCurrentPicosecond--; 
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 return ushtCurrentPicosecond; 
} 
 
 
/******************************************************************************* 
 * This function performs as a lateral offset attenuator, returning photons 
 *  based off of the misalignment between opposing faces of an optical junction. 
 *  The opposing faces are segmented into discrete channels with the attenuator 
 *  passing on the photons whose channels line up and attenuating the others. 
 *  Attenuation is defined as occurring by dropping channels from bottom up and 
 *  right to left with offsets defining row/column points.  Offset adjustments 
 *  are defined as starting in the upper left corner of the square model at 0,0 
 *  and increasing to MAX_JUNCTION_DIMENSION.  Therefore, zero attenuation 
 *  when the vertical offset setting is MAX_JUNCTION_DIMENSION or higher 
 *  (including a special case when the vertical offset setting is one less than 
 *  MAX_JUNCTION_DIMENSION and the horizontal offset setting is 
 *  MAX_JUNCTION_DIMENSION or higher) and 100% attenuation occurs when both 
 *  offsets are set to zero.  This correlates to dropping channels from bottom 
 *  up and right to left. 
 ******************************************************************************/ 
void attenuatePhotonPulse(unsigned char bytPulseToAttenuate[] 
           [MAX_JUNCTION_DIMENSION][MAX_JUNCTION_DIMENSION], 
           const long lngPulseDuration, 
           unsigned short ushtVerticalCutoff, 
           unsigned short ushtHorizontalCutoff) 
{  
 // Loop counters for indexing each of the photon pulse matrix's three 
 //  dimensions. 
 unsigned short ushtDepthCounter = 0; 
 unsigned short ushtVerticalCounter = 0; 
 unsigned short ushtHorizontalCounter = 0; 
 
 /*************************************************************************** 
  * End of the local variables and start of the function's functionality. 
  */ 
 
 // Check for the special condition where horizontal offset is equal to or  
 //  greater than MAX_JUNCTION_DIMENSION indicating no attenuation of the row 
 //  indexed by the vertical offset setting.  This combination of offset 
 //  settings is duplicated by fully attenuating the next row. 
 if (ushtHorizontalCutoff >= MAX_JUNCTION_DIMENSION) 
 { // Horizontal offset indicates no attenuation of this row.  Adjust 
  //  vertical offset to next row... 
  ushtVerticalCutoff++; 
  //  and reset the horizontal offset to start at the beginning of the 
  //  row. 
  ushtHorizontalCutoff = 0; 
 } 
 
 // Check for zero attenuation condition to skip attenuating. 
 if (ushtVerticalCutoff < MAX_JUNCTION_DIMENSION) 
 { // Cycle through each segment of the optical junction outside the offset 
  //  bounds setting all elements to zero i.e. attenuated.  Those within 
  //  the bounds are passed on as is. 
  for (ushtDepthCounter; 
     ushtDepthCounter < lngPulseDuration; 
     ushtDepthCounter++) 
  { // Reset the vertical and horizontal starting point for this 
   //  picosecond. 
   ushtVerticalCounter = ushtVerticalCutoff; 
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   ushtHorizontalCounter = ushtHorizontalCutoff; 
 
   for (ushtVerticalCounter; 
      ushtVerticalCounter < MAX_JUNCTION_DIMENSION; 
      ushtVerticalCounter++) 
   {  
 
    for (ushtHorizontalCounter; 
       ushtHorizontalCounter < MAX_JUNCTION_DIMENSION; 
       ushtHorizontalCounter++) 
    { // Any photons contained in this element were attenuated. 
     bytPulseToAttenuate[ushtDepthCounter][ushtVerticalCounter] 
                  [ushtHorizontalCounter] = 0; 
    } 
     
    // Reset the horizontal for attenuating the next row.  Don't 
    //  place before the loop or the initial horizontal offset 
    //  setting will have no affect. 
    ushtHorizontalCounter = 0; 
   } 
 
  } 
 
 } 
 
} 
 
 
/******************************************************************************* 
 * This function provides information on the results of the attenuator's 
 *  affects on the photon pulse. 
 ******************************************************************************/ 
unsigned long checkOutput(unsigned char bytAttenuatedPhotonPulse[] 
           [MAX_JUNCTION_DIMENSION][MAX_JUNCTION_DIMENSION], 
           const long lngPulseDuration) 
{ 
 // Variable to store the number of photons remaining in the attenuated 
 //  pulse and returned by the function. 
 unsigned long ulngNumberOfRemainingPhotons = 0; 
 
 // Loop counters for indexing each of the photon pulse matrix's three 
 //  dimensions. 
 unsigned short ushtDepthCounter = 0; 
 unsigned short ushtVerticalCounter = 0; 
 unsigned short ushtHorizontalCounter = 0; 
 
 /*************************************************************************** 
  * End of the local variables and start of the function's functionality. 
  */ 
 
 // Cycle through each element of the photon pulse within the pulse duration 
 //  and count the number of photons left. 
 for (ushtDepthCounter; 
    ushtDepthCounter < lngPulseDuration; 
    ushtDepthCounter++) 
 { // Reset the vertical to start counting at the first row. 
  ushtVerticalCounter = 0; 
 
  for (ushtVerticalCounter; 
     ushtVerticalCounter < MAX_JUNCTION_DIMENSION; 
    ushtVerticalCounter++) 
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  { // Reset the horizontal to start counting from the first element of 
   //  this row. 
   ushtHorizontalCounter = 0; 
 
   for (ushtHorizontalCounter; 
      ushtHorizontalCounter < MAX_JUNCTION_DIMENSION; 
      ushtHorizontalCounter++) 
   { // Add the photons in this matrix element to the running total. 
    ulngNumberOfRemainingPhotons = ulngNumberOfRemainingPhotons + 
             bytAttenuatedPhotonPulse[ushtDepthCounter] 
             [ushtVerticalCounter] 
             [ushtHorizontalCounter]; 
   } 
 
  } 
   
 } 
 // Return the running total of photons remaining after attenuation. 
 return ulngNumberOfRemainingPhotons; 
} 
 
 
/******************************************************************************* 
 * This function writes model performance statistics to a file. 
 ******************************************************************************/ 
void recordStatistics (const unsigned short ushtVerticalOffsetUsed, 
           const unsigned short ushtHorizontalOffsetUsed, 
           const unsigned short ushtTestIteration, 
           const unsigned long ulngPhotonsAfterAttenuation) 
{ 
 // File handle to record output of model performance. 
 FILE *ptrResults; 
 
 /*************************************************************************** 
  * End of the local variables and start of the function's functionality. 
  */ 
 
 // Try to open the performance output file for appending. 
 if ( (ptrResults = fopen ("Lateral_Offset_Attenuator_Output.csv", "a") ) 
  != NULL) 
 { // File handle was successfully created.  Append the file with the 
  //  performance parameters supplied. 
  fprintf (ptrResults, "%u,%u,%u,%u\n", ushtVerticalOffsetUsed, 
          ushtHorizontalOffsetUsed, ushtTestIteration, 
              ulngPhotonsAfterAttenuation); 
 
  // Close the performance output file. 
  fclose (ptrResults); 
 
  // Provide feedback to user where the program is at. 
  printf ("%u, %u, %u : ", ushtVerticalOffsetUsed, 
            ushtHorizontalOffsetUsed, ushtTestIteration); 
 } 
 else 
 { // There was a problem opening the performance output file.  Notify the 
  //  user. 
  printf ("\nFailed to open the output file.\n"); 
 } 
 
} 
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/******************************************************************************* 
 * The main entry point for this program. 
 ******************************************************************************/ 
void main() 
{ // A three dimensional matrix to represent a photon pulse. 
 unsigned char bytArrayPhotonPulse[MAX_PULSE_DEPTH][MAX_JUNCTION_DIMENSION] 
          [MAX_JUNCTION_DIMENSION] = {0}; 
 
 // Loop counters to run increasing attenuator offset settings.  Increasing 
 //  attenuator offset settings equate to reduced attenuation.  Setting 
 //  ushtVerticalOffset offset setting to MAX_PULSE_DEPTH or more results in 
 //  no attenuation i.e no geometrical misalignment.  Setting 
 //  ushtHorizontalOffset to MAX_PULSE_DEPTH or more results in no 
 //  attenuation of the row indexed by ushtVerticalOffset and is equivalent 
 //  to fully attenuating the next row. 
 unsigned short ushtVerticalOffset = 0; 
 unsigned short ushtHorizontalOffset = 0; 
 
 // Loop counter for multiple test iterations for a pair of offset settings. 
 unsigned short ushtTestRunCounter = 0; 
 
 // Variable to store the size of the photon matrix in the time dimension. 
 //  Change the initialization value for functionality testing. 
 long lngPulseDuration = 0; 
 
 // Variable to store the number of photons to insert in a uniformly 
 //  distributed photon pulse matrix.  Normally set to zero to clear the 
 //  matrix between attenuation test iterations of offset pairs, but also 
 //  used for functionality testing purposes. 
 unsigned char bytUniformPhotonCount = 0; 
 
 // Variable to store the number of photons in a pulse following an 
 //  attenuation test for a pair of offset settings. 
 unsigned long ulngRemainingPhotons = 0; 
 
 /*************************************************************************** 
  * End of the local variables and start of the function's functionality. 
  */ 
 
 // A loop to performing multiple attenuation events while increasing the 
 //  amount of vertical offset designated.  This equates to moving from 
 //  maximum attenuation (maximum lateral offset misalignment) to zero 
 //  attenuation (no lateral offset misalignment). 
 for (ushtVerticalOffset; 
    ushtVerticalOffset < MAX_JUNCTION_DIMENSION; 
    ushtVerticalOffset++) 
 { // Reset the horizontal offset setting for this row. 
  ushtHorizontalOffset = 0; 
   
  // Another loop to performing multiple attenuation events while 
  //  increasing the amount of horizontal offset designated. 
  for (ushtHorizontalOffset; 
     ushtHorizontalOffset <= MAX_JUNCTION_DIMENSION; 
     ushtHorizontalOffset++) 
  { // Reset the loop counter for multiple test iterations for this pair 
   //  of offset settings. 
   ushtTestRunCounter = 0; 
 
   // A loop to perform multiple test runs with the same pair of offset 
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   //  settings. 
   for (ushtTestRunCounter; 
      ushtTestRunCounter < NUMBER_OF_TEST_RUNS; 
      ushtTestRunCounter++) 
   { // Clear the photon pulse matrix from the last test.  Also used 
    //  for creating uniformly distributed photon pulses for 
    //  functionality testing purposes by commenting out 
    //  populatePhotonPulse() below. 
    populateUniformPhotonPulse(bytArrayPhotonPulse, 
                lngPulseDuration + 1, 
                bytUniformPhotonCount); 
 
    // Populate three dimensional matrix from file.  Comment out to 
    //  perform functionality testing using 
    //  populateUniformPhotonPulse() above. 
    lngPulseDuration = populatePhotonPulse(bytArrayPhotonPulse); 
 
    // Attenuate the number of photons based off the lateral offset 
    //  settings.  Increasing settings equate to decreasing lateral 
    //  misalignment and corresponding decrease in attenuation. 
    attenuatePhotonPulse(bytArrayPhotonPulse, lngPulseDuration, 
             ushtVerticalOffset, ushtHorizontalOffset); 
 
    // Check the output of the attenuation function. 
    ulngRemainingPhotons = checkOutput(bytArrayPhotonPulse, 
                   lngPulseDuration); 
 
    // Record performance results in a file. 
    recordStatistics(ushtVerticalOffset, ushtHorizontalOffset, 
            ushtTestRunCounter, ulngRemainingPhotons); 
 
   } 
 
  } 
 
 } 
 
 // A prompt and a pause to allow collecting memory usage statistics. 
 printf ("\n\nDone.  Press enter.\n"); 
 getchar(); 
} 
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Appendix B:  Matlab Script For Experiment 1 

numberOfRegions = 11; 
 
outerRadialLimit = 11*10^-6; 
  
interval = outerRadialLimit / numberOfRegions; 
  
radialDistance = 0:interval:outerRadialLimit; 
  
wavelength = 1310*10^-9; 
  
radiusOfCore = 4*10^-6; 
  
coreRefractiveIndex = 1.49; 
cladRefractiveIndex = 1.485; 
  
numericalAperture = sqrt(coreRefractiveIndex^2 - ... 
           cladRefractiveIndex^2); 
  
normalizedFrequency = (2 * pi * radiusOfCore * numericalAperture) / ... 
                                               wavelength; 
                                            
rightside = 0.65 + 1.62 * normalizedFrequency^(-3/2) ... 
                 + 2.88 * normalizedFrequency^-6; 
              
modefieldradius = rightside * radiusOfCore; 
  
intensity = 1 / modefieldradius^2 * exp( (-2 * radialDistance.^2) / ... 
                                               modefieldradius^2); 
                                            
sigma = modefieldradius / 2; 
  
CDF = erf(radialDistance / sqrt(2 * sigma^2)); 
  
regionTotal = 0; 
  
for counter = 1:length(radialDistance) - 1 
    fprintf('Percent from %02.2f to %02.2f microns = %f%%\n', ... 
            radialDistance(counter) / 10^-6, ... 
            radialDistance(counter + 1) / 10^-6, ... 
            100 * (CDF(counter + 1) - CDF(counter))) 
         
    regionTotal = regionTotal + 100 * (CDF(counter+ 1) - CDF(counter)); 
end 
 
  
fprintf('Region total is %f%%\n', regionTotal)  
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